Evaluation of the Nutritional Profile and Obesogenic Potential of a Formulated High-Fat Diet
DOI:
https://doi.org/10.54536/ajfst.v4i2.5213Keywords:
Feed Efficiency, High-fat Diet, Nutrient Digestibility, Obesity, Proximate AnalysisAbstract
High-fat diets (HFDs) are commonly used in nutritional research to model obesity and associated metabolic disorders. However, detailed profiling of their nutritional composition and physiological effects is essential for model validation. The present study developed standardized HFDs using locally available beef tallow as a cost-effective fat source and evaluated both the nutritional profile of these formulated diets and their efficacy in promoting obesity progression using male Wistar rat models. Fifteen (15) male Wistar rats were locally sourced and used for the study. They were grouped into three (3) of five (5) animals each. Group I served as the control and received standard rat chow (SRC) while groups II and IIIreceived SRC blended with 10% (HF-10) and 20% (HF-20) beef tallow respectively. The experiment lasted for ten (10) weeks during which all the animals were allowed access to feed and water ad libitum. Proximate analysis of the rat diets and faecal matter were determined using standard methods. Feed efficiency, nutrient digestibility, and morphometric parameters were determined using standard formula. Results from the study indicate that protein and fibre content of the rats’ feed was reduced with increased fat supplementation with the HF-20 rat showing the highest energy (4144.1 Kcal/kg) and 64.8% increase in feed efficiency compared to the SRC diet. Also, HF diets increased body weight (35%), Lee’s obesity index (18.5%), abdominal circumference (43.5%), absolute adipose tissue weight (776.43%) and adiposity index (529.2%) in a dose-dependent manner. The faecal proximate composition analysis showed a slight increase in ash and lipid excretion with an enhanced fat digestibility coefficient. Evidence from the present study shows that a high-fat diet containing 20% beef tallow (HF-20) effectively induced obesity and associated metabolic disturbances in male Wistar rats. The findings demonstrate a clear dose-response relationship between dietary fat content and the development of obesity-related phenotypes. These findings highlight the use of HFD in understanding the pathophysiology of obesity and metabolic disease, while also providing a practical animal obesity model for preclinical research.
Downloads
References
Agboola, A. R., Itam, A. H., Ekeleme, C. M., Agwupuye, E. I., Ahmed, Z. O., Igiakong, G. P., Agbor, G. B., Abubakar, A. N., Adamu, Z., & David-Oku, E. (2023). Ameliorative Effects of Alchornea cordifolia Extract on Bisphenol A-Induced Obesity in Wistar rats. Clinical Phytoscience, 11(2025), 1-13.
Alor, P. C., & Chinko, B. C. (2022). Flat Tummy Water Attenuates Lipid Profile and Serum Glucose of High-Fat Diet-Induced Obese Female Wistar Rats. Journal of Complementary and Alternative Medical Research, 20(4), 19-28.
Altunkaynak, B. Z., Ozbek, E., & Altunkaynak, M. E. (2007). A stereological and histological analysis of spleen on obese female rats, fed with high fat diet. Saudi Med J, 28(3), 353-357.
Aly, J. M., & Polotsky, A. J. (2017). Paternal diet and obesity: effects on reproduction. Seminars in Reproductive Medicine,
An, J., Wang, Q., Yi, S., Liu, X., Jin, H., Xu, J., Wen, G., Zhu, J., & Tuo, B. (2022). The source of the fat significantly affects the results of high-fat diet intervention. Scientific reports, 12(1), 4315.
Azeez, T. A. (2022). Obesity in Africa: The challenges of a rising epidemic in the midst of dwindling resources. Obesity Medicine, 31, 100397.
Bakos, H. W., Mitchell, M., Setchell, B. P., & Lane, M. (2011). The effect of paternal diet‐induced obesity on sperm function and fertilization in a mouse model. International journal of andrology, 34(5pt1), 402-410.
Bays, H. E., Kirkpatrick, C. F., Maki, K. C., Toth, P. P., Morgan, R. T., Tondt, J., Christensen, S. M., Dixon, D. L., & Jacobson, T. A. (2024). Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. J Clin Lipidol, 18(3), e320-e350.
Beheshti, R., Treesukosol, Y., Igusa, T., & Moran, T. H. (2018). A predictive model of rat calorie intake as a function of diet energy density. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 315(2), R256-R266.
Benoit, M., & Mottet, A. (2023). Energy scarcity and rising cost: towards a paradigm shift for livestock. Agricultural Systems, 205, 103585.
Billington, C. J., Epstein, L. H., Goodwin, N. J., Hill, J. O., Pi-Sunyer, F. X., Rolls, B. J., Stern, J., Wadden, T. A., Weinsier, R. L., & Wilson, G. T. (2000). Overweight, Obesity, And Health Risk. Archives of Internal Medicine, 160(7), 898-904.
Brown, C. F., Zvenyach, T., Paul, E., Golden, L., Varney, C., & Bays, H. E. (2024). Obesity and advocacy: A joint clinical perspective and expert review from the obesity medicine association and the obesity action coalition-2024. Obesity Pillars, 100119.
Buettner, R., Schölmerich, J., & Bollheimer, L. C. (2007). High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring), 15(4), 798-808.
Choi, M.-S., Kim, Y.-J., Kwon, E.-Y., Ryoo, J. Y., Kim, S. R., & Jung, U. J. (2015). High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling-and inflammation-related genes. British journal of nutrition, 113(6), 867-877.
Cintra, D. E., Ropelle, E. R., Moraes, J. C., Pauli, J. R., Morari, J., Souza, C. T., Grimaldi, R., Stahl, M., Carvalheira, J. B., Saad, M. J., & Velloso, L. A. (2012). Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One, 7(1), e30571.
Coelho, D. F., Pereira-Lancha, L. O., Chaves, D. S., Diwan, D., Ferraz, R., Campos-Ferraz, P., Poortmans, J., & Lancha Junior, A. (2011). Effect of high-fat diets on body composition, lipid metabolism and insulin sensitivity, and the role of exercise on these parameters. Brazilian journal of medical and biological research, 44, 966-972.
de Wit, N. J., Boekschoten, M. V., Bachmair, E. M., Hooiveld, G. J., de Groot, P. J., Rubio-Aliaga, I., Daniel, H., & Müller, M. (2011). Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice. PLoS One, 6(4), e19145.
Declèves, A. E., Mathew, A. V., Cunard, R., & Sharma, K. (2011). AMPK mediates the initiation of kidney disease induced by a high-fat diet. J Am Soc Nephrol, 22(10), 1846-1855.
Després, J.-P. (2012). Abdominal obesity and cardiovascular disease: is inflammation the missing link? Canadian Journal of Cardiology, 28(6), 642-652.
Després, J.-P., & Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature, 444(7121), 881-887.
Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., & Xu, K. (2018). Inflammatory links between high fat diets and diseases. Frontiers in immunology, 9, 2649.
Encinosa, W. E., Bernard, D. M., Steiner, C. A., & Chen, C.-C. (2005). Use And Costs Of Bariatric Surgery And Prescription Weight-Loss Medications. Health Affairs, 24(4), 1039-1046.
Enos, R. T., Davis, J. M., Velázquez, K. T., McClellan, J. L., Day, S. D., Carnevale, K. A., & Murphy, E. A. (2013). Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters. J Lipid Res, 54(1), 152-163.
Folorunso, O. P., Uzuh, F. D., Ayeni, T. S., & Abere, D. V. (2020). Influence of High and Low Saturated Fatty Acid-Based Diets on Weight and Body Composition of Albino Rats (Rattusnorvegicus). Open Access Journal of Microbiology & Biotechnology 5(4), 000172.
Food And Agriculture Organization Of The United Nations. (2003). Food Energy - Methods Of Analysis And Conversion Factors.
Grabner, G. F., Xie, H., Schweiger, M., & Zechner, R. (2021). Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nature metabolism, 3(11), 1445-1465.
Hariri, N., & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition research reviews, 23(2), 270-299.
Hijo, A. H. T., Coutinho, C. P., Alba-Loureiro, T. C., Leite, J. S. M., Bargi-Souza, P., & Goulart-Silva, F. (2019). High fat diet modulates the protein content of nutrient transporters in the small intestine of mice: possible involvement of PKA and PKC activity. Heliyon, 5(10).
Hu, S., Wang, L., Yang, D., Li, L., Togo, J., Wu, Y., Liu, Q., Li, B., Li, M., & Wang, G. (2018). Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell metabolism, 28(3), 415-431.
Ikete, P. W., & Chinko, B. C. (2022). Inhibition of Serum Lipase as a Mechanism of Action for Anti-Obesity Potentials of Dioscorea bulbifera Extracts on Wistar Rats. Asian Journal of Health Sciences, 8(1), ID29-ID29.
Ingweye, J. (2015). Nutrient digestibility and biochemical indices of rats fed gmelina fruit pulp incorporated diets. Agrosearch, 15(1), 47-58.
Islam, A. S., Sultana, H., Refat, M. N. H., Farhana, Z., Kamil, A. A., & Rahman, M. M. (2024). The global burden of overweight-obesity and its association with economic status, benefiting from STEPs survey of WHO member states: A meta-analysis. Preventive Medicine Reports, 5(46), 102882.
Jahan, M. S., Haque, M. I., Gautam, M., & Bhuiyan, M. E. R. (2024). Comparative analysis of high-fat diets: Effects of mutton, beef, and vegetable fats on body weight, biochemical profiles, and liver histology in mice. Heliyon, 10(20).
Kopelman, P. G. (2000). Obesity As A Medical Problem. Nature, 404(6778), 635-643.
Kushner, R. F. (2014). Weight Loss Strategies For Treatment Of Obesity. Progress in cardiovascular diseases, 56(4), 465-472.
Levin, B. E., Dunn-Meynell, A. A., Balkan, B., & Keesey, R. E. (1997). Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol, 273(2 Pt 2), R725-730.
Ludwig, D. S., Aronne, L. J., Astrup, A., de Cabo, R., Cantley, L. C., Friedman, M. I., Heymsfield, S. B., Johnson, J. D., King, J. C., & Krauss, R. M. (2021). The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. The American journal of clinical nutrition, 114(6), 1873-1885.
OECD/WHO. (2024). Health at a Glance. Asia/Pacific 2024, .
Ravussin, E., & Smith, S. R. (2002). Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 967(1), 363-378.
Richard, A. J., White, U., Elks, C. M., & Stephens, J. M. (2020). Adipose tissue: physiology to metabolic dysfunction. Endotext [Internet].
Ritchie, S. A., & Connell, J. M. C. (2007). The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutrition, metabolism and cardiovascular diseases, 17(4), 319-326.
Sadie-Van Gijsen, H., & Kotzé-Hörstmann, L. (2023). Rat models of diet-induced obesity and metabolic dysregulation: current trends, shortcomings and considerations for future research. Obesity Research & Clinical Practice, 17(6), 449-457.
Sakers, A., De Siqueira, M. K., Seale, P., & Villanueva, C. J. (2022). Adipose-tissue plasticity in health and disease. Cell, 185(3), 419-446.
She, P., Olson, K. C., Kadota, Y., Inukai, A., Shimomura, Y., Hoppel, C. L., Adams, S. H., Kawamata, Y., Matsumoto, H., Sakai, R., Lang, C. H., & Lynch, C. J. (2013). Leucine and protein metabolism in obese Zucker rats. PLoS One, 8(3), e59443.
Showalter, M. R., Nonnecke, E. B., Linderholm, A. L., Cajka, T., Sa, M. R., Lönnerdal, B., Kenyon, N. J., & Fiehn, O. (2018). Obesogenic diets alter metabolism in mice. PLoS One, 13(1), e0190632.
Sisk, M. B., Hausman, D. B., Martin, R. J., & Azain, M. J. (2001). Dietary conjugated linoleic acid reduces adiposity in lean but not obese Zucker rats. The Journal of Nutrition, 131(6), 1668-1674.
Softic, S., Gupta, M. K., Wang, G. X., Fujisaka, S., O’Neill, B. T., Rao, T. N., Willoughby, J., Harbison, C., Fitzgerald, K., Ilkayeva, O., Newgard, C. B., Cohen, D. E., & Kahn, C. R. (2017). Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest, 127(11), 4059-4074.
Strable, M. S., & Ntambi, J. M. (2010). Genetic control of de novo lipogenesis: role in diet-induced obesity. Critical reviews in biochemistry and molecular biology, 45(3), 199-214.
Strandberg, L., Verdrengh, M., Enge, M., Andersson, N., Amu, S., Önnheim, K., Benrick, A., Brisslert, M., Bylund, J., & Bokarewa, M. (2009). Mice chronically fed high-fat diet have increased mortality and disturbed immune response in sepsis. PLoS One, 4(10), e7605.
Tang, C., Wang, Y., Xu, Z., Chen, D., Xu, J., Yang, D., Zhang, L., Liu, J., & Kan, J. (2024). The relationships between high-fat diet and metabolic syndrome: Potential mechanisms. Food Bioscience, 104261.
Wali, J. A., Jarzebska, N., Raubenheimer, D., Simpson, S. J., Rodionov, R. N., & O’Sullivan, J. F. (2020). Cardio-metabolic effects of high-fat diets and their underlying mechanisms—a narrative review. Nutrients, 12(5), 1505.
Wang, Y., Wei, W., Jin, Q., Meng, Z., & Wang, X. (2025). Medium-and long-chain triacylglycerol has higher digestibility and bioaccessibility compared with physical mixed oils under conditions of bile salts secretion deficiency. Food Research International, 115922.
WHO. (2025). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Winzell, M. S., & Ahrén, B. (2004). The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes, 53 Suppl 3, S215-219.
Yiannakou, I., Yuan, M., Zhou, X., Singer, M. R., & Moore, L. L. (2023). Dietary fat intakes, lipid profiles, adiposity, inflammation, and glucose in women and men in the Framingham Offspring Cohort. Frontiers in physiology, 14, 1144200.
Zhang, X., Li, G., Li, F., Zhang, D., Yuan, L., Zhao, Y., Zhang, Y., Li, X., Song, Q., & Wang, W. (2023). Effect of feed efficiency on growth performance, body composition, and fat deposition in growing Hu lambs. Animal Biotechnology, 34(2), 183-198.
Zhang, Y., Liu, J., Yao, J., Ji, G., Qian, L., Wang, J., Zhang, G., Tian, J., Nie, Y., & Zhang, Y. E. (2014). Obesity: pathophysiology and intervention. Nutrients, 6(11), 5153-5183.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Edith Reuben, Bruno Chukwuemeka Chinko, Nimisoere Peace Batubo, Precious Whiskey Ikete, Fortune Somiari Amah-Tariah

This work is licensed under a Creative Commons Attribution 4.0 International License.



