Nixtamalization and Fermentation as Treatments for Enhancing the Functional and Nutritional Properties of Foods

Authors

  • Ndi Betrand Bongjo Department of Chemistry & Centre for Food Technology and Research, Benue State University, Makurdi, Nigeria https://orcid.org/0000-0002-0717-6119
  • Charles Chukwuma Ariahu Department of Food Science and Technology, College of Food Technology and Human Ecology, Joseph Sarwuan Tarka University, Makurdi, Nigeria
  • Barnabas Aloo Ikyenge Department of Chemistry & Centre for Food Technology and Research, Benue State University, Makurdi, Nigeria

DOI:

https://doi.org/10.54536/ajfst.v4i1.3916

Keywords:

Fermentation, Food Formulation, Nixtamalization, Nutrient Bioavailability

Abstract

This study evaluated the impact of nixtamalization and fermentation on the functional and nutritional properties of selected flours (maize and Cassava). Maize and Cassava were subjected to nixtamalization and fermentation treatments respectively, and their functional properties, proximate composition, mineral content, and antinutrient levels were evaluated. The samples were as follows; Nixtamalized maize (NXM), Non-nixtamalized maize (NNM), Fermented Cassava (FC) and Non-fermented Cassava (NFC). Results revealed that both nixtamalization and fermentation significantly enhanced key functional properties, including water absorption capacity (1.69-2.19 g/g), oil absorption capacity (1.53-1.73 g/g), bulk density (0.57-0.62 g/mL) and swelling index (2.78-3.38 mL/g). The proximate composition showed notable enhancement in protein (3.74-16.27 %), fat (2.26-7.28 %), and fibre content (1.91-3.97 %), while mineral analysis demonstrated elevated levels of essential micronutrients such as calcium (148.49-189.44 mg/100 g), Magnesium (83.44-125.32 mg/100 g), Potassium (149.63-186.32 mg/100 g), Sodium (43.83 49.44 mg/100 g) and Phosphorus (94.79-123.48 mg/100 g). Furthermore, both treatments effectively reduced the antinutrient content, including phytates and tannins, contributing to improved nutrient bioavailability. Overall, nixtamalization and fermentation present promising methods for enhancing the nutritional and functional qualities of flours, making them suitable for use in various food formulations like complementary food, fufu, bread making and many others.

Downloads

Download data is not yet available.

References

Alka, S., Neelam, Y., & Shruti, S. (2012). Effect of fermentation on physicochemical properties and in vitro starch and protein digestibility of selected cereals. International Journal of Agricultural and Food Science, 2(3), 66-70.

Amador-Rodríguez, K. Y., Silos-Espino, H., Perales-Segovia, C., Flores-Benitez, S., Valera-Montero, L. L., & Martínez-Bustos, F. (2020). High-energy alkaline milling as a potential physical and chemical cornstarch ecofriendly treatment to produce nixtamalized flours. International Journal of Biological Macromolecules, 164, 3429–3437. https://doi.org/10.1016/j.ijbiomac.2020.08.132

Amador-Rodríguez, K. Y., Silos-Espino, H., Valera-Montero, L. L., Perales-Segovia, C., Flores-Benítez, S., & Martínez-Bustos, F. (2019). Physico-chemical, thermal, and rheological properties of nixtamalized creole corn flours produced by high-energy milling. Food Chemistry, 283, 481–488. https://doi.org/10.1016/j.foodchem.2019.01.044

AOAC. (2012). Association of Official Analytical Chemists. In Official methods of analysis of the analytical chemist international (18th ed.).

Awolu, O., Iwambe, V., Oluwajuyitan, T., Bukola Adeloye, J., & Ifesan, B. (2022). Quality evaluation of ‘Fufu’ produced from sweet cassava (Manihot Esculenta) and guinea corn (Sorghum Bicolor) flour. Journal of Culinary Science and Technology, 20(2), 134–164. https://doi.org/10.1080/15428052.2020.1821858

Awuchi, G. C., Kate Echeta, C., Godswill, C., Somtochukwu, V., & Kate, C. (2019). The Functional Properties of Foods and Flours. International Journal of Advanced Academic Research, 5(11), 2488–9849. https://www.researchgate.net/publication/337403804

Bello-Pérez, L. A., Flores-Silva, P. C., Camelo-Méndez, G. A., Paredes-López, O., & De Figueroa-Cárdenas, J. D. (2015). Effect of the nixtamalization process on the dietary fiber content, starch digestibility, and antioxidant capacity of blue maize tortilla. Cereal Chemistry, 92(3), 265–270. https://doi.org/10.1094/CCHEM-06-14-0139-R

Campechano Carrera, E. M., de Dios Figueroa Cárdenas, J., Arámbula Villa, G., Martínez Flores, H. E., Jiménez Sandoval, S. J., & Luna Bárcenas, J. G. (2012). New ecological nixtamalisation process for tortilla production and its impact on the chemical properties of whole corn flour and wastewater effluents. International Journal of Food Science and Technology, 47(3), 564–571. https://doi.org/10.1111/j.1365-2621.2011.02878.x

Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52(6), 3681–3688. https://doi.org/10.1007/s13197-014-1427-2

Chinma, C. E., Azeez, S. O., Sulayman, H. T., Alhassan, K., Alozie, S. N., Gbadamosi, H. D., Danbaba, N., Oboh, H. A., Anuonye, J. C., & Adebo, O. A. (2020). Evaluation of fermented African yam bean flour composition and influence of substitution levels on properties of wheat bread. Journal of Food Science, 85(12), 4281–4289. https://doi.org/10.1111/1750-3841.15527

Disseka, W., Faulet, M., Koné, F., Gnanwa, M., & Kouamé, L. (2018). Phytochemical Composition and Functional Properties of Millet (Pennisetum glaucum) Flours Fortified with Sesame (Sesamum indicum) and Moringa (Moringa oleifera) as a Weaning Food. Advances in Research, 15(6), 1–11. https://doi.org/10.9734/air/2018/42811

Erkmen, O., & Bozoglu, T. F. (2016). Basic Principles of Food Fermentation. Food Microbiology: Principles into Practice, 228–252. https://doi.org/10.1002/9781119237860.ch39

Erokhin, V., Diao, L., Gao, T., Andrei, J. V., Ivolga, A., & Zong, Y. (2021). The supply of calories, proteins, and fats in low-income countries: A four-decade retrospective study. International Journal of Environmental Research and Public Health, 18(14), 1–30. https://doi.org/10.3390/ijerph18147356

Feyera, M. (2021). Effects of Fermentation Time and Blending Ratio on Functional Properties and Organoleptic Acceptability of Complementary Food. Food Science and Quality Management, 10, 18–29. https://doi.org/10.7176/fsqm/104-03

Hasmadi, M., Noorfarahzilah, M., Noraidah, H., Zainol, M. K., & Jahurul, M. H. A. (2020). Functional properties of composite flour: A review. Food Research, 4(6), 1820–1831. https://doi.org/10.26656/fr.2017.4(6).419

Hassan, S. M., Forsido, S. F., Tola, Y. B., & Bikila, A. M. (2023). Optimization of the Effects of Nixtamalization on the Nutritional and Anti-Nutritional Contents of Quality Protein Maize Flour. Journal of Agriculture, Food and Natural Resources, 1(1), 29–39. https://doi.org/10.20372/afnr.v1i1.603

Hassan, S. M., Forsido, S. F., Tola, Y. B., Bikila, A. M., & Ahmed, Z. (2023). Effect of Nixtamalization on the Nutritional, Anti-nutritional, Functional, Physicochemical and Mineral Properties of Maize (Zea mays) Tortillas. Journal of Food Chemistry & Nanotechnology, 9(3), 132–140. https://doi.org/10.17756/jfcn.2023-159

Krishnaiah, D., Devi, T., Bono, A., & Sarbatly, R. (2009). Studies on phytochemical constituents of six Malaysian medicinal plants. Journal of Medicinal Plants Research, 3(2), 067–072.

Massingue Júnior, A. A., Massie, B. B., Sigauque, F. J. L., Dimande, A. A., & Fernandes, G. D. (2023). Quality of Fortified Zea Mays L (Maize) and Triticum Durum (Wheat) Flours. American Journal of Food Science and Technology, 2(2), 46–53. https://doi.org/10.54536/ajfst.v2i2.1997

Matendo, R. E., Imathiu, S., Udomkun, P., & Owino, W. O. (2023). Effect of nixtamalization of maize and heat treatment of soybean on the nutrient, antinutrient, and mycotoxin levels of maize-soybean-based composite flour. Frontiers in Sustainable Food Systems, 7(October), 1–12. https://doi.org/10.3389/fsufs.2023.1057123

Nout, R. (2005). Food fermentation: An introduction. Wageningen University and Research, 13–18.

Nwokoro, O., Ogbonna, J. ., & Okpala, G. . (2010). Simple picrate method for the determination of cyanide in cassava flour. Bio-Research, 7(2), 502–504. https://doi.org/10.4314/br.v7i2.56582

Ocheme, O. B., Oludamilola, O. O., & Mikailu, E. G. (2010). Effect of lime soaking and cooking (nixtamalization) on the proximate, functional and some anti-nutritional properties of millet flour. AU Journal of Technology, 14(2), 131–138.

Offiah, L. O., Ariahu, C. C., & Igyor, M. A. (2016). Effect of malting and fermentation on the proximate composition and sensory properties of maize (Zea mays) and African yam bean (Sphenostylis stenocarpa) based tortilla. The International Journal of Engineering and Science, 5(8), 1–6.

Ojha, P., Adhikari, R., Karki, R., Mishra, A., Subedi, U., & Karki, T. B. (2018). Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Science and Nutrition, 6(1), 47–53. https://doi.org/10.1002/fsn3.525

Ojokoh, A. O., Daramola, M. K., & Oluoti, O. J. (2013). Effect of fermentation on nutrient and anti-nutrient composition of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) blend flours. African Journal of Agricultural Research, 8(27), 3566–3570. https://doi.org/10.5897/ajar12.1944

Oladeji, B. S., Irinkoyenikan, O. A., Akanbi, C. T., & Gbadamosi, S. O. (2018). Effect of fermentation on the physicochemical properties, pasting profile and sensory scores of normal endosperm maize and quality protein maize flours. International Food Research Journal, 25(3), 1100–1108.

Olosunde, W. A., Paul, T., & Antia, O. O. (2023). Formulation of an Improved Nutritional Quality Composite Flour for Bakery Products Using Wheat and Sologold Sweet Potato. American Journal of Food Science and Technology, 2(2), 37–45. https://doi.org/10.54536/ajfst.v2i2.1825

Onwuka, G. I. (2018). Food Analysis and Instrumentation Theory and Practice. Naphthadi prints. A division of Hug Support Nig. Ltd.

Prastiwi, E. K., Fatoni, R., Fathoni, A., Setiarto, R. H. B., & Damayanti, E. (2024). The Effect of Fermentation Time on The Quality of Mocaf (Modified Cassava Flour) with Raw Material Bokor Genotype Cassava. Journal of Agricultural Engineering, 13(1), 12. https://doi.org/10.23960/jtep-l.v13i1.12-26

Ramírez-Jiménez, A. K., Rangel-Hernández, J., Morales-Sánchez, E., Loarca-Piña, G., & Gaytán-Martínez, M. (2019). Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chemistry, 276(September 2018), 57–62. https://doi.org/10.1016/j.foodchem.2018.09.166

Ramírez-Miranda, M., Cruz y Victoria, M., Vizcarra, M., & Anaya-Sosa, I. (2014). Determination of moisture sorption isotherms and their thermodynamics properties of nixtamalized maize flour. Revista Mexicana de Ingeniera Qumica, 13, 165–178.

Rincón-Aguirre, A., Figueroa-Cárdenas, J. de D., Ramírez-Wong, B., Arámbula-Villa, G., Jiménez-Sandoval, S. J., Martinez-Flores, H. E., & Pérez-Robles, J. F. (2021). Effect of nixtamalization with Ca(OH)2, CaCl2, and CaCO3 on the protein secondary structure, rheological, and textural properties of soft wheat flour doughs. Journal of Cereal Science, 101, 103271. https://doi.org/10.1016/j.jcs.2021.103271

Rodríguez-Martínez, N. A., Salazar-García, M. G., Ramírez-Wong, B., Islas-Rubio, A. R., Platt-Lucero, L. C., Morales-Rosas, I., Marquez-Melendez, R., & Martínez-Bustos, F. (2015). Effect of Malting and Nixtamalization Processes on the Physicochemical Properties of Instant Extruded Corn Flour and Tortilla Quality. Plant Foods for Human Nutrition, 70(3), 275–280. https://doi.org/10.1007/s11130-015-0490-9

Rojas, N. P., Vázquez, G., & Rodriguez, M. E. (2016). Lime Cookng Process: Nixtamalization from Mexico to the World.

Santiago-Ramos, D., Figueroa-Cárdenas, J. de D., Véles-Medina, J. J., & Salazar, R. (2018). Physicochemical properties of nixtamalized black bean (Phaseolus vulgaris L.) flours. Food Chemistry, 240(February 2017), 456–462. https://doi.org/10.1016/j.foodchem.2017.07.156

Sefa-Dedeh, S., Cornelius, B., & Afoakwa, E. O. (2003). Effect of fermentation on the quality characteristics of nixtamalized corn. Food Research International, 36(1), 57–64. https://doi.org/10.1016/S0963-9969(02)00108-4

Sefa-Dedeh, S., Cornelius, B., Sakyi-Dawson, E., & Afoakwa, E. O. (2004). Effect of nixtamalization on the chemical and functional properties of maize. Food Chemistry, 86(3), 317–324. https://doi.org/10.1016/j.foodchem.2003.08.033

Sunico, D. J. A., Rodriguez, F. M., Tuaño, A. P. P., Mopera, L. E., Atienza, L. M., & Juanico, C. B. (2021). Physicochemical and Nutritional Properties of Nixtamalized Quality Protein Maize Flour and its Potential as Substitute in Philippine Salt Bread. Chiang Mai University Journal of Natural Sciences, 20(2), 1–15. https://doi.org/10.12982/CMUJNS.2021.035

Valderrama-Bravo, C., Domínguez-Pacheco, A., Hernández-Aguilar, C., Zepeda-Bautista, R., Del Real-López, A., Pahua-Ramos, M. E., Arellano-Vázquez, J. L., & Moreno-Martínez, E. (2017). Physical and chemical characterization of masa and tortillas from parental lines, crosses, and one hybrid. International Agrophysics, 31(1), 129–138. https://doi.org/10.1515/intag-2016-0030

Published

2025-03-24

How to Cite

Bongjo, N. B., Ariahu, C. C., & Ikyenge, B. A. (2025). Nixtamalization and Fermentation as Treatments for Enhancing the Functional and Nutritional Properties of Foods. American Journal of Food Science and Technology, 4(1), 50–59. https://doi.org/10.54536/ajfst.v4i1.3916