Nutritional and Biochemical Evaluation of Wild Marine Fishes Lates calcarifer and Alepes djedaba from Cox’s Bazar, Bangladesh

Authors

  • Khandakar Zakir Hossain Division of Post-Harvest Technology, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar- 190025, India
  • Faisal Rashid Division of Post-Harvest Technology, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar- 190025, India
  • Kawkabul Saba Division of Fish Nutrition and Biochemistry, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar- 190025, India
  • Farhat Bashir Division of Fish Nutrition and Biochemistry, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar- 190025, India
  • Shanzida Islam Zoology Section, Biological Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205 Bangladesh
  • Mahmuda Begum Zoology Section, Biological Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205 Bangladesh

DOI:

https://doi.org/10.54536/ajfst.v4i2.6031

Keywords:

Biochemical Profile, Coastal People, Fatty Acids, Marine Fish, Nutrition Supplements

Abstract

Marine fish are crucial for human nutrition, as they include high-quality protein, necessary amino acids, polyunsaturated fatty acids (PUFAs), and accessible minerals. This study examined the nutritional and biochemical content of two economically important wild marine fish species, Asian seabass (Lates calcarifer) and shrimp scad (Alepes djedaba), obtained from artisanal landings in Cox’s Bazar, Bangladesh, during the 2025 monsoon. Analyses were carried out using standard protocols and advanced instrumentation. L. calcarifer had somewhat less protein (21.1 ± 0.6%) and more lipid (2.5 ± 0.3%) than A. djedaba (22.0 ± 0.7% protein, 1.5 ± 0.2% lipid). The fatty acid profile revealed that L. calcarifer was high in polyunsaturated (53.0%) and monounsaturated (44.4%) fatty acids but low in saturated fatty acids (2.6%), resulting in minor index of atherogenicity (IA: 0.01) and index of thrombogenicity (IT: 0.01). In contrast, A. djedaba contained more saturated fatty acids (69.0%), as well as alpha-linolenic acid (4.2%) and eicosapentaenoic acid (4.6%), resulting in higher IA (2.03) and IT (1.01). Amino acid analysis revealed greater essential amino acids in L. calcarifer (~220 mg/g protein) than in A. djedaba (~135 mg/g protein). In contrast, mineral profiling showed A. djedaba contained high phosphorus (21,000 mg/100 g) and potassium (12,000 mg/100 g), and L. calcarifer had higher microminerals. Principal Component Analysis identified amino acids and minerals as the primary differentiating factors. Overall, L. calcarifer delivers superior amino acids and cardioprotective fatty acids, whereas A. djedaba provides rich macrominerals, implying that including a variety of marine fish species in diets can improve nutrition and food security.

Downloads

Download data is not yet available.

References

Aberoumand, A. (2012). Proximate and mineral composition of fish and shellfish. Food Science and Quality Management, 7, 33-36.

AOAC. (1995). Official methods of analysis (16th ed.). Association of Official Analytical Chemists. https://www.scirp.org/reference/referencespapers?referenceid=2720214

Bayissa, T. N., Gobena, S., Vanhauteghem, D., Du, L. G., Kabeta, M. W., & Janssens, G. P. J. (2021). The impact of lake ecosystems on mineral concentrations in tissues of Nile tilapia (Oreochromis niloticus). Animals, 11(4), 1000. https://doi.org/10.3390/ani11041000

Baum, S. J., Kris-Etherton, P. M., Willett, W. C., Lichtenstein, A. H., Rudel, L. L., Maki, K. C., Whelan, J., Ramsden, C. E., & Block, R. C. (2012). Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipidol., 6(3), 216-34. https://doi.org/10.1016/j.jacl.2012.04.077. Epub 2012 Apr 13. PMID: 22658146; PMCID: PMC9398216.

Belton, B., Karim, M., Thilsted, S., Murshed-e-Jahan, K., Collis, W., & Phillips, M. (2011). Review of aquaculture and fish consumption in Bangladesh (Studies and Reviews 2011-53). The WorldFish Center.

Bogard, J. R., Thilsted, S. H., Marks, G. C., Wahab, M. A., Hossain, M. A. R., Jakobsen, J., & Stangoulis, J. (2015). Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. Journal of Food Composition and Analysis, 42, 120-133. https://doi.org/10.1016/j.jfca.2015.03.002

Brenna, J. T., Salem, N., Sinclair, A., & Cunnane, S. C. (2009). α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids, 80(2-3), 8591, https://doi.org/10.1016/j.plefa.2009.01.004

Bruno, A., Michael, S., Brett, G., & Nicholas, W. (2016). The influence of dietary fatty acids and fasting on the hepatic lipid metabolism of barramundi (Lates calcarifer). Aquaculture Research, 48(7). 10.1111/are.13215

Calder, P. C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms, and clinical relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1851(4), 469–484.

Chan, Y. B., Loh, S. H., Ibrahim, Y. S., Bachok, Z., & Tuan Anuar, S. (2021). Dynamic fatty acid profiles of Asian sea bass (Lates calcarifer) from Setiu Wetlands, East Coast Peninsular Malaysia. Malaysian Journal of Analytical Sciences, 25(1), 53-61. https://doi.org/10.17576/mjas-2021-2501-05

Coniglio, S., Shumskaya, M., & Vassiliou, E. (2023). Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology (Basel), 12(2), 279. https://doi.org/10.3390/biology12020279. PMID: 36829556; PMCID: PMC9953405.

Department of Fisheries. (2023). Yearbook of fisheries statistics of Bangladesh 2021–2022. Ministry of Fisheries and Livestock (MoFL), Bangladesh.

Food and Agriculture Organization of the United Nations & World Health Organization. (1991). Protein quality evaluation: Report of the Joint FAO/WHO Expert Consultation (FAO Food and Nutrition Paper No. 51).

Food and Agriculture Organization of the United Nations & World Health Organization. (2001). Human vitamin and mineral requirements: Report of a joint FAO/WHO expert consultation, Bangkok, Thailand. https://www.fao.org/3/y2809e/y2809e03.htm

FAO/WHO. (2013). Dietary protein quality evaluation in human nutrition: Report of an FAO Expert Consultation (FAO Food and Nutrition Paper No. 92). Food and Agriculture Organization of the United Nations.

FAO. (2019). The state of world fisheries and aquaculture 2018 – Meeting the Sustainable Development Goals. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/i9540en/i9540en.pdf

FAO. (2020). The state of world fisheries and aquaculture 2020: Sustainability in action. Food and Agriculture Organization of the United Nations.

Farhaduzzaman, A. M., Khan, M. S., Osman, M. H., Shovon, M. N. H., Azam, M., & Makhdum, N. (2023). Progress of seabass, Lates calcarifer (Bloch, 1970) culture in Bangladesh: Field-level updates from the Bhola and Satkhira Districts. International Journal of Agricultural Research, Innovation and Technology, 12(2), 117-125. https://doi.org/10.3329/ijarit.v12i2.64097

Fernstrom, J. D., & Fernstrom, M. H. (2007). Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. Journal of Nutrition, 137(6 Suppl 1), 1539S-1547S. https://doi.org/10.1093/jn/137.6.1539S

Frydrych, A., Krośniak, M., & Jurowski, K. (2023). The role of chosen essential elements (Zn, Cu, Se, Fe, Mn) in food for special medical purposes (FSMPs) dedicated to oncology patients—critical review: State-of-the-art. Nutrients, 15(4), 1012. https://doi.org/10.3390/nu15041012

Gillingham, L. G., Harris-Janz, S., & Jones, P. J. (2011). Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids, 46(3), 209-28. https://doi.org/10.1007/s11745-010-3524-y, PMID: 21308420.

Gladyshev, M. I., Arts, M. T., & Sushchik, N. N. (2009). Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA + DHA) from aquatic to terrestrial ecosystems. In: Lipids in Aquatic Ecosystems. Springer, 179-209, http://dx.doi.org/10.1007/978-0-387-89366-2_8

Golam, S., Abul, H., Bhabananda, B., & Hiroki, A. (2012). Taste-producing components in fish and fisheries products: A review. International Journal of Food and Fermentation Technology, 2, 113-121.

Ghosh, A., Ray, S., Roy, B., Shahid, R., Rahman, M., Kumar, R., & Sarower, G. (2024). Heavy metals, trace elements, and biochemical composition of Asian seabass (Lates calcarifer) in coastal areas of Bangladesh. AACL Bioflux, 16(6), 3461-3469.

Graham Sustainability Institute (2025). Impacts of excess phosphorus. University of Michigan, Retrieved September 13, 2025, from https://graham.umich.edu/wleb/phosphorus/impacts

Hamza, B., Muhammad, N. Y., Ali, I., & Iliyasu, A. B. (2019). Impacts of Phosphates on Water Quality and Aquatic Life. Chemistry Research Journal, 4(3), 124-133.

Haque, M., Hossain, I., Uddin, S., & Dey, P. (2020). Review on distribution, culture practices, food and feeding, brood development, and artificial breeding of Seabass, Lates calcarifer (BLOCH 1790): Bangladesh perspective. Research in Agriculture Livestock and Fisheries, 6, 405-414. 10.3329/ralf.v6i3.44806

Harper, A. (1981). Amino Acid Scoring Patterns. Joint FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements, Rome, https://www.fao.org/4/m3013e/m3013e00.htm

Hilton, C., Ram, S., Shairy, K., Agnieszka, W., & Toru, T. (2019). High Omega-6/Omega-3 Fatty Acid Ratio Diets and Risk of Noncommunicable Diseases. In: The Role of Functional Food Security in Global Health. https://doi.org/10.1016/B978-0-12-813148-0.00014-1

Islam, R., Kamruzzaman, P. T., Rahman, A., & Sattar, A. (2012). Studies on nutritional composition and characterization of lipids of Lates calcarifer (Bhetki). Bangladesh Journal of Scientific and Industrial Research, 47(4), 393–400.

Jerry, D. R. (Ed.) (2013). Biology and culture of Asian seabass Lates calcarifer. CRC Press. file:///C:/Users/khmeh/Downloads/Dean_R._Jerry_Biology_and_Culture_of_Asian_SeabaBook4You.pdf

Joint WHO/FAO/UNU Expert Consultation. (2007). Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series, 935, 1–265. https://pubmed.ncbi.nlm.nih.gov/18330140

Kamruzzaman, S., Hossain, M. D., Jewel, M. A. S., Khanom, D. A., Mustary, S., & Khatun, M. M. (2015). Proximate composition and nutritional value of different life stages of Lates calcarifer (Bloch, 1790). University Journal of Zoology, Rajshahi University, 34, 21–24. http://journals.sfu.ca/bd/index.php/UJZRU

Kanij, R. S., Tania, A., Moriom, A., Sakeb, A. P., & Hasan, M. R. (2025). A first analytical report on nutritional profiling of wild and cultured Asian sea bass (Lates calcarifer). Applied Food Research, 5(1), 100932, https://doi.org/10.1016/j.afres.2025.100932

Karna, E., Szoka, L., Huynh, T. Y. L., & Palka, J. A. (2020). Proline-dependent regulation of collagen metabolism. Cellular and Molecular Life Sciences, 77(10), 1911–1918. https://doi.org/10.1007/s00018-019-03363-3

Khawar, M., Masood, Z., & Hasan, H. (2024). Trace metals and nutrient analysis of marine fish species from the Gwadar coast. Scientific Reports, 14, 6548. https://doi.org/10.1038/s41598-024-57335-0

Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106(21), 2747-2757. https://doi.org/10.1161/01.CIR.0000038493.65177.94

Kuldeep, V., Ashwani, W., Srikanta, S., Subhendu, A., & Muralidhar, M. (2015). Phosphorus dynamics, eutrophication and fisheries in the aquatic ecosystems in India. Current science, 108(7), 1306 -1314.

Kumar, D. B., Kajal, K., Kumar, T. A., Archisman, R., Subhamoy, D., & Barsha, B. (2024). Unlocking the nutritional potential: amino acid profile of eight Indian food fishes and their role in meeting recommended dietary allowances. Frontiers in Sustainable Food Systems, 8, 10.3389/fsufs.2024.1432034

Lall, S. P., & Kaushik, S. J. (2021). Nutrition and Metabolism of Minerals in Fish. Animals (Basel), 11(9), 2711. https://doi.org/10.3390/ani11092711

Li, P., Mai, K., Trushenski, J., & Wu, G. (2009). New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids, 37(1), 43-53. https://doi.org/10.1007/s00726-008-0171-1

Manusher Jonno Foundation (2021). Policy Brief 2: Standard of Living of Small-Scale Artisanal Fishing Communities of Bangladesh. Retrieved from https://www.manusherjonno.org/wp-content/uploads/2021/07/Policy-Brief-2-Standard-of-Living-of-small-scale-artisanal-fishing-communities-of-Bangladesh.pdf

Mariamenatu, A. H., & Abdu, E. M. (2021). Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “balanced antagonistic metabolic functions” in the human body. Journal of Lipids, 2021, 8848161. https://doi.org/10.1155/2021/8848161

Majeed, A., Liang, Z., Zhu, L., Liu, C., Kalhoro, M. A., & Saeed, F. (2022). Stock analysis of shrimp scads (Alepes djedaba) fishery from Northern Arabian Sea, Balochistan coast, Pakistan. Pakistan Journal of Zoology, 54(5), 2203–2212. https://doi.org/10.17582/journal.pjz/20210329070315

Misako, K., Atsushi, O., & Yoichi, U. (2002). Taste enhancements between various amino acids and IMP. Chemical senses, 27(8), 739-45.

Mostofa, M., Rahman, S., Sonia, S., Sobuj, M. K., Islam, Z., & Hasan, S. (2023). Cage culture of seabass (Lates calcarifer) in Cox’s Bazar coast of the Bay of Bengal: A pilot study. Bangladesh Journal of Fisheries, 21-22, 127-134.

Mozaffarian, D., & Wu, J. H. Y. (2011). Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. Journal of the American College of Cardiology, 58(20), 2047-2067, https://doi.org/10.1016/j.jacc.2011.06.063

Özden, Ö. (2005). Changes in amino acid and fatty acid composition during the shelf-life of marinated fish. Journal of the Science of Food and Agriculture, 85(12), 2015–2020, http://dx.doi.org/10.1002/jsfa.2207

Pervin, T., Yeasmin, S., Islam, R., Kamruzzaman, M., Rahman, M. A., & Sattar, M. (2012). Studies on nutritional composition and characterization of lipids of Lates calcarifer (Bhetki). Bangladesh Journal of Scientific and Industrial Research, 47(4), 393. 10.3329/bjsir.v47i4.14068

Purushothaman, K., Ho Jia Wen, R., bin Mohamed, M. H., Rwei Qing, S. D. T., Heng Wuan, L., Liang, B., Thanh Vu, N., Voigtmann, M., Loo, G., & Vij, S. (2024). Comparative nutritional and histological analysis of Malabar red snapper (Lutjanus malabaricus) and Asian seabass (Lates calcarifer). Animals, 14(12), 1803. https://doi.org/10.3390/ani14121803

Rahman, R., Chowdhury, M. M., Sultana, N., & Saha, B. (2019). Proximate and major mineral composition of commercially important marine fishes of Bangladesh. IOSR Journal of Agriculture and Veterinary Science, 11(1) 18-25.

Rifat, M., Wahab, M., Rahman, M., Nahiduzzaman, M., & Mamun, A. (2023). Nutritional value of the marine fish in Bangladesh and their potential to address malnutrition: A review. Heliyon, 9, e13385. https://doi.org/10.1016/j.heliyon.2023.e13385

Rodrigues, M. J., Franco, F., Martinho, F., Pereira, M. E., Coelho, J. P., & Pardal, M. A. (2021). Essential mineral content variations in commercial marine species induced by ecological and taxonomical attributes. Journal of Food Composition and Analysis, 103, 104118, https://doi.org/10.1016/j.jfca.2021.104118

Sadia, A. K., Chad, M., Hossain, J., Ferdous, A., & Jahan, R. (2022). Availability of marine fishes in Cox’s Bazar, Bangladesh: A case study on the BFDC Landing Center. Croatian Journal of Fisheries, 80(3). https://doi.org/10.2478/cjf-2022-0014

Sajana, N., & Nandan, S. B. (2019). Proximate composition and nutritive value of shrimp scad, Alpes djedaba (Forsskal, 1775) off Cochin coast. International Journal for Research in Engineering Application & Management, 5(1), https://ijream.org/papers/IJREAMV05I0149073.pdf

Sarah, A., Afnan, F., & Simone, P. (2020). Farmed versus wild fish consumption in relation to fatty acid composition in the Kingdom of Bahrain. Egyptian Journal of Aquatic Biology and Fisheries, 24, 803-816. https://doi.org/10.21608/ejabf.2020.151489

Seafood Network Bangladesh (2024). Culture techniques of coral/vetki or seabass fish in Bangladesh. https://seafoodnetworkbd.com/culture-techniques-of-coral-vetki-or-seabass-fish-in-bangladesh

Scaioli, E., Liverani, E., & Belluzzi, A. (2017). The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: A comprehensive review and future therapeutic perspectives. Int J Mol Sci., 18(12), 2619. https://doi.org/10.3390/ijms18122619.

Scott, M., Paul, B., Graeme, B., Simon, A., & Jenny, S. (2001). Incorporating metal speciation and bioavailability into water quality guidelines for protecting aquatic ecosystems. Australasian Journal of Ecotoxicology, 7(2), 109-122.

Sikder, R., Haque, M., Das, S., Shaon, M. A., & Islam, M. (2025). Investigating the nutritional composition of cultured Asian seabass Lates calcarifer in Bangladesh’s Khulna-Satkhira region: A focus on fatty acids and amino acids (preprint). 10.21203/rs.3.rs-5750226/v1

Simopoulos, A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 21(6), 495-505.

https://doi.org/10.1080/07315724.2002.10719248

Siri-Tarino, P. W., Sun, Q., Hu, F. B., & Krauss, R. M. (2010). Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. The American Journal of Clinical Nutrition, 91(3), 535-546, https://doi.org/10.3945/ajcn.2009.27725

Sirot, V., Oseredczuk, M., Bemrah-Aouachria, N., Volatier, J. L., & Leblanc, J. C. (2008). Lipid and fatty acid composition of fish and seafood consumed in France. Journal of Food Composition and Analysis, 21(1), 8-16.

Sivakami, S. (1990). Observations on some aspects of the biology of Alepes djedaba (Forsskal) from Cochin. Journal of the Marine Biological Association of India, 32 (1&2), 107-118. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://eprints.cmfri.org.in/1109/1/Siva_107-118.pdf

Syed, R., Abdhakir, E., & Muthukkaruppan, R. (2020). Proximate and mineral composition of commercially important marine fin fishes from the Kasimedu fish landing centre, Chennai. Journal of Fisheries and Life Sciences, 5(1). https://www.fishlifesciencejournal.com/archives/2020/5/1/JUNE/134Tacon, A. G. J., & Metian, M. (2013). Fish nutrition and feeding. Aquaculture, 412-413, 1-4.

Tocher, D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11(2), 107-184. https://doi.org/10.1080/713610925

Traina, A. Quinci, E. M., Sabatino, N., Del Core, M., Bellante, A., Bono, G., Giuga, M., Avellone, G., Sprovieri, M., & D’Agostino, F. (2024). Protein, essential amino acid, and fatty acid composition of five target fishery species of the Central Mediterranean sea. Animals, 14(15), 2158. https://doi.org/10.3390/ani14152158

Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985-992. https://doi.org/10.1016/0140-6736(91)91846-M

Ullah, M. R., Rahman, M. A., Haque, M. N., Sharker, M. R., Islam, M. M., & Alam, M. A. (2022). Nutritional profiling of some selected commercially important freshwater and marine water fishes of Bangladesh. Heliyon, 8(10), e10825, https://doi.org/10.1016/j.heliyon.2022.e10825

Venkatachalam, S., Kandasamy, K., Krishnamoorthy, I., & Narayanasamy, R. (2018). Survival and growth of fish (Lates calcarifer) under integrated mangrove-aquaculture and open-aquaculture systems. Aquaculture Reports, 9, 18-24. https://doi.org/10.1016/j.aqrep.2017.11.004

Venugopal, V., & Shahidi, F. (1996). Structure and composition of fish muscle. Food Reviews International, 12(2), 175-197. https://doi.org/10.1080/87559129609541074

Willer, D. F., Newton, R., Malcorps, W., Kok, B., Little, D., Lofstedt, A., de Roos, B., & Robinson, J. P. W. (2024). Wild fish consumption can balance nutrient retention in farmed fish. Nat Food, 5(3), 221-229. https://doi.org/10.1038/s43016-024-00932-z.

Wilson, R. P. (2003). Utilization of dietary carbohydrate by fish. Aquaculture, 124, 67-80. https://doi.org/10.1016/0044-8486(94)90363-8

Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Advances in Nutrition, 1(1), 31-37, https://doi.org/10.3945/an.110.1008

Wu, G., Bazer, F. W., & Davis, T. A. (2014). Amino acid nutrition in animals: Protein synthesis and beyond. Annual Review of Animal Biosciences, 2(1), 387-417. https://doi.org/10.1146/annurev-animal-022513-114113

Wu, G. (2016). Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. Journal of Animal Science and Biotechnology, 5, 34. https://doi.org/10.1186/2049-1891-5-34

Yasmin, F., Bosu, A., Ullah, M., Khan, A., Akhter, M., Karim, E., Hasan, K., & Mahmud, Y. (2023). Assessment of growth performance and survivability of Asian seabass (Lates calcarifer) under different stocking densities in brackish water ponds of the south-west coast of Bangladesh. Sustainable Aquatic Research, 2(2), 92-100. https://doi.org/10.5281/zenodo.8296609

Downloads

Published

2025-10-31

How to Cite

Nutritional and Biochemical Evaluation of Wild Marine Fishes Lates calcarifer and Alepes djedaba from Cox’s Bazar, Bangladesh. (2025). American Journal of Food Science and Technology, 4(2), 44-56. https://doi.org/10.54536/ajfst.v4i2.6031

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.