CRISPR-Cas9 Genomic Editing as an Innovation in the Management of Sickle Cell Disease: A Systematic Review

Authors

  • Aloysius Obinna Ikwuka College of Medicine and Health Sciences, American International University West Africa, Banjul, The Gambia
  • Solomon Musa Clinical Projects, Xcene Research, Ikeja, Nigeria
  • Francis Chigozie Udeh College of Medicine and Health Sciences, American International University West Africa, Banjul, The Gambia
  • Abdullahi Adobanyi Musa Department of Family Medicine, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
  • Ugo Collins Chukwuezie Department of Community Medicine, University of Lagos, Surulere, Nigeria

DOI:

https://doi.org/10.54536/ajmsi.v2i2.1760

Keywords:

CRISPR-Cas9, Genomic Editing, Innovation, Management, Sickle Cell Disease, Gene Therapy

Abstract

Genomic editing is a group of technologies that scientists have used to alter an organism’s DNA. Of the several genomic editing techniques, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) is well known. The CRISPR-Cas9 system is faster, cheaper, more accurate, more efficient than other genomic editing methods, and it is an adaptation from bacteria’s immune mechanism. Sickle cell diseases (SCDs) are a group of monogenic diseases, and despite their high prevalence and chronic debilitating nature, they continue to have few therapeutic options available. The aim of this study is to review existing literature and current clinical trials on CRISPR-Cas9 genomic editing as an innovation in the management of sickle cell disease (SCD), as well as the current state of treatment for SCD. For this systematic review, PubMed, Google Scholar, African Journals Online (AJOL), and Clinicaltrial.gov articles published up to 6th October, 2022 were searched. Searches for current clinical trials using CRISPR-Cas9 as intervention were conducted by using the search terms such as sickle cell disease, genomic editing, genetics, novel treatments, hematopoietic stem cell transplantation, gene therapy, and CRISPR-Ca9. Studies cited include meta-analyses, original research, prospective clinical trials, online abstracts, literature reviews, retrospective studies, case series, and scientific meetings. The primary search obtained 27,678 articles. Following a review of titles and abstracts, a total of 32 publications and 6 ongoing clinical trials were included in this systematic review based on the recent evidence-based management of SCD. CRISPR-Cas9 genomic editing stands out as a novel, innovative technology which has the potential to cure SCD in children and adults with minimal side effects. Six clinical trials are ongoing with a huge potential for scaling up to Phases 3 and 4.

Downloads

Download data is not yet available.

References

Adams, R. J., McKie, V. C., Hsu, L., Files, B., Vichinsky, E., Pegelow, C. & et al. (1998). Prevention of a first stroke by transfusions in children with sickle cell anaemia and abnormal results on transcranial Doppler ultrasonography. The New England Journal of Medicine, 339(1), 5-11. https://doi.org/10.1056/NEJM199807023390102.

Ataga, K. I., Kutlar, A., Kanter, J., Liles, D., Cancado, R., Friedrisch, J. & et al. (2017). Crizanlizumab for the prevention of pain crises in sickle cell disease. The New England Journal of Medicine, 376, 429-439.

Bak, R. O., Dever, D. P. & Porteus, M. H. (2018). CRISPR-Cas9 genome editing in human hematopoietic stem cells. Nature Protocols, 13(2), 358–376.

Baronciani, D., Angelucci, E., Potschger, U., Gaziev, J., Yesilipek, A., Zecca, M. & et al. (2016). Haemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Haemoglobinopathy Registry, 2000-2010. Bone Marrow Transplant, 51, 536-541.

Canver, M. C., Smith, E. C., Sher, F., Pinello, L., Sanjana, N. E., Shalem, O. & et al. (2015). BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 527, 192-197. https://doi.org/10.1038/nature15521.

Chaudhary, A., Kumari, B., Choudhury, M., Singh, S. & Kaur. R. (2020). A review of the therapeutic potential, prospects, and challenges of CRISPR/Cas9 genome editing in the treatment of Sickle Cell Disease (SCD). International Journal of Scientific and Research Publications (IJSRP), 11(1), 670-676. https://doi.org/10.29322/IJSRP.11.01.2021.p10983.

Demirci, S., Leonard, A., Essawi, K. & Tisdale, J. F. (2021). CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Molecular Therapy, Methods & Clinical Development, 23, 276–285.

Demirci, S., Leonard, A., Haro-Mora, J. J., Uchida, N. & Tisdale, J. F. (2019). CRISPR/Cas9 for Sickle cell disease: applications, future possibilities, and challenges. Advances in Experimental Medicine and Biology, 1144, 37-52. https://doi.org/10.1007/5584_2018_331.

Dever, D. P., Bak, R. O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C. E. & et al. (2016). CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 539(7629), 384–389.

DeWitt, M. A., Magis, W., Bray, N. L., Wang, T., Berman, J. R., Urbinati, F. & et al. (2016). Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Translational Medicine, 8(360), 360ra134. https://doi.org/10.1126/scitranslmed.aaf9336.

Eapen, M., Brazauskas, R., Walters, M. C., Bernaudin, F., Bo-Subait, K., Fitzhugh, C. D. & et al. (2019). Effect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: a retrospective multicentre, cohort study. The Lancet Haematology, 6(11), e585-e596. https://doi.org/10.1016/S2352-3026(19)30154-1.

Ekechi, H. O., Ikwuka, A. O., Udeh, F. C. & Abraham, J. C. (2023). Effects of Ethanol Extract of Rauwolfia vomitoria Leaf on Lipid Profile and Cerebellar Histology in Cisplatin-induced Oxidative Stress. British Journal of Medical and Health Research, 10(5), 16-39. https://doi.org/10.5281/zenodo.8042521.

Eshka, S. F. A., Bahador, M., Gordan, M. M., Karbasi, S., Tabar, Z. M. & Basiri, M. (2022). A systematic review of gene editing clinical trials. medRxiv, https://doi.org/10.1101/2022.11.24.22282599.

Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Domm, J., Eustace, B. K. & et al. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. The New England Journal of Medicine, 384(3), 252–260.

Gaston, M. H. & et al. (1986). Prophylaxis with oral penicillin in children with sickle cell anaemia: a randomized trial. The New England Journal of Medicine, 1593(52), 314–52.

Gluckman, E., Cappelli, B., Bernaudin, F., Labopin, M., Volt, F., Carreras, J. & et al. (2017). Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood, 129, 1548-1556.

Guo, N., Liu, J. B., Li, W., Ma, Y. S. & Fu D. (2022). The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. Journal of Advanced Research, 40, 135–152. https://doi.org/10.1016/j.jare.2021.11.018.

Hall, J. E. & Hall, M. E. (2020). Guyton and Hall Textbook of Medical Physiology. 14th Edition. Elsevier, p. 441-446.

Hoban, M. D., Lumaquin, D., Kuo, C. Y., Romero, Z., Long, J., Ho, M. & et al. (2016)a. CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Molecular Therapy, 24(9), 1561–1569.

Hoban, M. D., Orkin, S. H. & Bauer, D. E. (2016)b. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood, 127(7), 839–848.

Hossain, M. A. & Bungert, J. (2017). Genome editing for sickle cell disease: a little BCL11A goes a long way. Molecular Therapy, 25(3), 561– 562. https://doi.org/10.1016/j.ymthe.2017.02.003.

Ikwuka, A. O. (2015). Risk factors for the pathogenesis of diabetes mellitus type 2. Materials of 84th Scientific and Practical Conference of Students and Young Scientists with International Participation “Innovations in medicine”, p. 19. Available online: http://www.ifnmu.edu.ua/images/snt/files/konferenciya/Tezu_2015.pdf

Ikwuka, A. O. (2017)a. Dyslipidemia risk severity in patients with diabetes mellitus type 2 and essential hypertension. Journal of the 21st International Medical Congress of Students and Young Scientists, p. 59.

Ikwuka, A. O. (2017)b. Effectiveness of dapagliflozin in patients with diabetes mellitus type 2 and essential hypertension. Book of abstracts of the 7th International Students’ Scientific Conference of Young Medical Researchers, p. 102. Available online: http://www.stn.umed.wroc.pl/files/lm/Accepted_papers.16113.pdf

Ikwuka, A. O. (2017)c. Influence of dyslipidemia in patients with diabetes mellitus type 2 and essential hypertension. The Pharma Innovation Journal, 6(3), 101-103. Available online: http://www.thepharmajournal.com/archives/?year=2017&vol=6&issue=3&part=B

Ikwuka, A. O. & Haman, I. O. (2017)d. Features of kidney damage in patients with diabetes mellitus type 2 and essential hypertension. Journal of 86th Scientific and Practical Conference of Students and Young Scientists with International Participation “Innovations in medicine”, p. 144. Available online: http://www.ifnmu.edu.ua/images/snt/86-konf-tezi%20(1).pdf

Ikwuka, A. O., Virstyuk, N. G. & Luchko, O. R. (2017)e. Features of the functional state of kidneys in patients with diabetes mellitus type 2 and essential arterial hypertension. Materials of scientific-practical conference with international participation “Babenkivski reading”, p. 48.

Ikwuka, A. O. (2018)a. Clinical dynamics in patients with diabetes mellitus type 2 and concomitant essential hypertensive disease treated with dapagliflozin. Journal of the 22nd International Medical Congress of Students and Young Scientists, p. 32.

Ikwuka, A. O. (2018)b. Clinical effectiveness of SGLT-2 inhibitors in patients with diabetes mellitus type 2 and essential hypertensive disease. Endocrine Practice, 24(1), 74. https://doi.org/10.1016/S1530-891X(20)47129-0.

Ikwuka, A. O. (2018)c. Features of kidney damage in patients with arterial hypertension and type 2 diabetes mellitus and optimization of treatment. Specialized Academic Council IFNMU, Available online: http://www.ifnmu.edu.ua/images/zagalna_informacia/spec_vcheni_radi/2017-2019/%D0%9420.601.01/Ikvuka/Avtoreferat.pdf

Ikwuka, A. O. & Paliy, Yu. (2018)d. Structural changes of the left ventricular myocardium in patients with essential arterial hypertension and diabetes mellitus type 2. Abstracts of the 87th Scientific Conference of Students and Young Scientists with International Participation “Innovations in medicine”, p. 25-26. Available online: https://www.ifnmu.edu.ua/images/snt/zaproshennia_eng.pdf

Ikwuka, A. O. (2019)a. Clinical dynamics of nephropathy in patients with diabetes mellitus type 2 and concomitant essential hypertensive disease. Clinical Medicine, 19(2), s39. https://doi.org/10.7861/clinmedicine.19-2-s39.

Ikwuka, A. O. (2019)b. Clinical effectiveness of GLP-1 RAs in patients with metabolic syndrome diseases. Endocrine Practice, 25(1), 104-105. https://doi.org/10.1016/S1530-891X(20)46611-X.

Ikwuka, A. O. & Virstyuk, N. G. (2019)c. Pattern of cardiac remodelling of the left ventricle in patients with essential hypertensive disease and concomitant type 2 diabetes mellitus. Clinical Medicine, 19(3), s92. https://doi.org/10.7861/clinmedicine.19-3-s92.

Ikwuka, A. O. & Virstyuk, N. G. (2021). Influence of SGLT2 inhibitor and A2RB (AT1) on fibrogenesis and heart failure in patients with essential hypertensive disease combined with diabetes mellitus type 2. E-Poster No. 143 of the 44th & 45th Annual General and Scientific Meeting of the West African College of Physicians (WACP), 1 - 3 November, 2021. https://doi.org/10.13140/RG.2.2.26912.87047.

Ikwuka, A. O. & Virstyuk, N. (2022). Prognostic markers of nephropathy in patients with dual metabolic syndrome diseases (essential hypertensive disease and concomitant type 2 diabetes mellitus). Endocrine Practice, 28(5), S65-S66. https://doi.org/10.1016/j.eprac.2022.03.164.

Ikwuka, A. O. (2023)a. Dr. Aloy’s Core Essential Series (DACES) Medical Genetics. 1st Edition. Science and Education Publishing, USA, p. 1.

Ikwuka, A. O. (2023)b. Dr. Aloy’s Core Essential Series (DACES) Medical Genetics. 1st Edition. Science and Education Publishing, USA, p. 20-27.

Ikwuka, A. O. (2023)c. Dr. Aloy’s Core Essential Series (DACES) Immunology. 1st Edition. Science and Education Publishing, USA, p. 31.

Ikwuka, A. O. & Virstyuk, N. (2023)d. Patterns and Influence of Cardio-Metabolic Insufficiency in Patients with Essential Hypertensive Disease and Concomitant Type 2 Diabetes Mellitus. Endocrine Practice, 29(5), S32-S33. https://doi.org/10.1016/j.eprac.2023.03.076.

Ikwuka, A. O., Virstyuk, N. G., Luchko, O. R. & Kobitovych, I. (2023)e. Heterogeneity Of Renal Pathogenicity On The Background Of Asymptomatic Hyperuricemia In Patients With Dual Metabolic Syndrome Diseases (Essential Hypertensive Disease and Type 2 Diabetes Mellitus). British Journal of Medical and Health Research, 10(2), 1-9. https://doi.org/10.5281/zenodo.7690636.

Kotagama, O. W., Jayasinghe, C. D. & Abeysinghe, T. (2019). Era of genomic medicine: a narrative review on CRISPR technology as a potential therapeutic tool for human diseases. Biomed Research International, 2019, 1–15. https://doi.org/10.1155/2019/1369682.

Lattanzi, A., Camarena, J., Lahiri, P., Segal, H., Srifa, W., Vakulskas, C. A. & et al. (2021). Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Science Translational Medicine, 3(598), eabf2444. https://doi.org/10.1126/scitranslmed.abf2444.

Magis, W., DeWitt, M. A., Wyman, S. K., Vu, J. T., Heo, S., Shao, S. J. & et al. (2018). In vivo selection for corrected ß-globin alleles after CRISPR/Cas9 editing in human sickle hematopoietic stem cells enhances therapeutic potential. BioRxiv, https://doi.org/10.1101/432716.

Mandal, P. K., Ferreira, L. M., Collins, R., Meissner, T. B., Boutwell, C. L., Friesen, M. & et al. (2014). Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Stem Cell, 15(5), 643-652. https://doi.org/10.1016/j.stem.2014.10.004.

National Heart, Lung, and Blood Institute. (2015). “What is sickle cell disease?”, Available online: https://www.nhlbi.nihgov/health/sickle-cell-disease

Onda, M., Akaishi, J., Asaka, S., Okamoto, J., Miyamoto, S., Mizutani, K. & et al. (2005). Decrease expression of haemoglobin beta (HBB) gene in anaplastic thyroid cancer and recovery of its expression inhibits cell growth. British Journal of Cancer, 92, 2216-2224. https://doi.org/10.1038/sj/bjc.6602634.

Orkin, S. H. & Bauer, D. E. (2019). Emerging genetic therapy for sickle cell disease. Annual Review of Medicine, 70(1), 257–271.

Pandey, V. K., Tripathi, A., Bhushan, R., Ali, A. & Dubey, P. K. (2017). Application of CRISPR/Cas9 genome editing in genetic disorders: a systematic review up to date. Journal of Genetic Syndromes & Gene Therapy, 8(2), 321-331. https://doi.org/10.4172/2157-7412.1000321.

Park, S. H., Lee, C. M., Deshmukh, H. & Bao, G. (2016). Therapeutic CRISPR/Cas9 genome editing for treating sickle cell disease. Blood, 128(22), 4703–4703.

Park, S. H., Lee, C. M., Dever, D. P., Davis, T. H., Camarena, J., Srifa, W. & et al. (2019). Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Research, 47(15), 7955-7972. https://doi.org/10.1093/nar/gkz475.

Park, S. H. & Bao, G. (2021)a. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfusion and Apheresis Science, 60(1), 103060. https://doi.org/10.1016/j.transci.2021.103060.

Park, S. H. J. P., Cao, M., Zhang, Y., Sheehan, V. A. & Bao, G. (2021)b. CRISPR/cas9 editing induces high rates of unintended large gene modifications in HSPCs from patients with sickle cell disease. Blood, 138(Suppl.1), 3969–3969.

Piel, F. B. (2013). Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions. PLoS Medicine, 10(7), e1001484. https://doi.org/10.1371/journal.pmed.1001484.

Pinhas, A., Zhou, D. B., Otero-Marquez, O., CastanosToral, M. V., Migacz, J. V., Glassberg, J. & et al. (2022). Efficacy of CRISPR-based gene editing in a sickle cell disease patient as measured through the eye. Case Reports in Hematology, 2022, 6079631. https://doi.org/10.1155/2022/6079631.

Ramadier, S., Chalumeau, A., Felix, T., Othman, N., Aknoun, S., Casini, A. & et al. (2022). Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Molecular Therapy, 30(1), 145–163. https://doi.org/10.1016/j.ymthe.2021.08.019.

Ranadive, A. & Linga-Easwaran, J. (2022). Current sickle cell disease gene therapy treatments: literature review. Journal of Student Research, 1(1). https://doi.org/10.47611/jsr.v11i1.1534.

Rodriguez Rodriguez, D., Ramirez Solis, R., Garza Elizondo, M., Garza Rodriguez, M. & Barrera Saldaia, H. (2019). Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (Review). International Journal of Molecular Medicine, 43(4), 1559-1574. https://doi.org/10.3892/ijmm.2019.4112.

Samuelson, C., Radtke, S., Zhu, H., Llewellyn, M., Fields, E., Cook, S. & et al. (2021). Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal haemoglobin reinduction generates chromosomal translocations. Molecular Therapy, Methods and Clinical Development, 23, 507–523. https://doi.org/10.1016/j.omtm.2021.10.008.

Sharma, G., Sharma, A. R., Bhattacharya, M., Lee, S. S. & Chakraborty, C. (2021). CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Molecular Therapy, 29(2), 571–586.

Suwito, B. E., Adji, A. S., Widjaja, J. S., Angel, S. C. S., Al Hajiri, A. Z. Z. & Salamy, N. F. W. (2023). A review of CRISPR Cas9 for SCA: treatment strategies and could target β-globin gene and BCL11A gene using CRISPR Cas9 prevent the patient from sickle cell anaemia? Macedonian Journal of Medical Sciences, 11(F), 95-106. https://doi.org/10.3889/oamjms.2023.11435.

Tasan, I., Jain, S. & Zhao, H. (2016). Use of genome-editing tools to treat sickle cell disease. Human Genetics, 135(9), 1011–1028. https://doi.org/10.1007/s00439-016-1688-0.

Thornburg, C. D., Files, B. A., Luo, Z., Miller, S.T., Kalpatthi, R., Iyer, R. & et al. (2012). Impact of hydroxyurea on clinical events in the BABY HUG trial. Blood, 120(22), 4304-4310. https://doi.org/10.1182/blood-2012-03-419879.

Uchida, N., Drysdale, C. M., Nassehi, T., Gamer, J., Yapundich, M., DiNicola, J. & et al. (2021). Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease. Molecular Therapy, Methods and Clinical Development, 21, 121–32. https://doi.org/10.1016/j.omtm.2021.02.022.

Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V. G., Chen, W. & et al. (2008). Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proceedings of the National Academy of Science of the United States of America, 105, 1620-1625.

Ureña-Bailén, G., Block, M., Grandi, T., Aivazidou, F., Quednau, J., Krenz, D. & et al. (2023). Automated good manufacturing practice-compatible CRISPR-Cas9 editing of hematopoietic stem and progenitor cells for clinical treatment of β-hemoglobinopathies. The CRISPR Journal, 6(1), 5–16.

Virstyuk, N. G., Ikwuka, A. O., Haman, I. O. & Adebomi, M. S. (2016). Diabetes mellitus type 2, arterial hypertension and dyslipidemia. Materials of 2nd International Scientific and Practical Conference “Therapeutic readings: modern aspects of diagnosis and treatment of diseases of internal organs”, p. 46-47.

Virstyuk, N. G. & Ikwuka, A. O. (2017)a. Diagnostic and prognostic markers of the diabetes mellitus type 2 course in connection with essential arterial hypertension taking into account the kidney function. Precarpathian Journal Pulse, 8(44), 53-62.

Virstyuk, N. H., Ikwuka, A. O., Losyuk, L. V., Kobrynska, O. Ya. & Markiv, H. D. (2017)b. Dapagliflozin utility in patients with diabetes mellitus type 2 and essential hypertensive disease. Actual Problems of Modern Medicine, 4(60)1, 76-79. Available online: http://www.umsa.edu.ua/journal2stat4_2017_eng.html

Virstyuk, N. G. & Ikwuka, A. O. (2018)a. Features of asymptomatic hyperuricemia in patients with diabetes mellitus type 2 and concomitant essential arterial hypertension. Clinical and Experimental Pathology, 1(63), 22-26. https://doi.org/10.24061/1727-4338.XVII.1.63.2018.5.

Virstyuk, N. G., Ikwuka, A. O. & Didushko, O. M. (2018)b. Effect of dapagliflozin on the level of uric acid during asymptomatic hyperuricemia in patients with diabetes mellitus type 2 and concomitant arterial hypertension. Art of Medicine, 1(5), 21-26. Available online: https://art-of-medicine.ifnmu.edu.ua/index.php/aom/article/view/179/150

Virstyuk, N. H. & Ikwuka, A. O. (2018)c. Dapagliflozin influence on the clinical course of diabetes mellitus type 2 and essential hypertension in patients. Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, p. 2007-2008. https://doi.org/10.1007/978-3-319-70548-4_582.

Virstyuk, N. G. & Ikwuka, A. O. (2019). Nephropathic characteristics in patients with diabetes mellitus type 2 and essential hypertensive disease. Art of Medicine, 1(5), 44-47. https://doi.org/10.21802/artm.2019.1.9.44.

Virstyuk, N. G. & Ikwuka, A. O. (2021)a. Asymptomatic hyperuricemia and functional state of the kidneys in patients with essential arterial hypertension and concomitant diabetes mellitus type 2. European Journal of Clinical Medicine, 2(3), 100-104. https://doi.org/10.24018/clinicmed.2021.2.3.65.

Virstyuk, N. H., Ikwuka, A. O., Luchko, O. R. & Kocherzhat, O. I. (2021)b. Peculiarities of renal insufficiency in patients with diabetes mellitus type 2 and arterial hypertension. Materials of scientific-practical conference with international participation “Achievements and prospects of experimental and clinical endocrinology” Twentieth Danilevsky readings, p. 86-87.

Wen, J., Tao, W., Hao, S. & Zu, Y. (2017). Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. Journal of Hematology & Oncology, 10(1), 119. https://doi.org/10.1186/s13045-017-0489-9.

World Health Organization. (2011). Sickle-cell disease and other haemoglobin disorders. Fact sheet No. 308. Available online: http://www.who.int/mediacentre/factsheets/fs308/en/

Wu, Y., Zeng, J., Roscoe, B. P., Liu, P., Yao, Q., Lazzarotto, C. R. & et al. (2019). Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nature Medicine, 25, 776-783. https://doi.org/10.1038/s41591-019-0401-y.

Xiao-Jie, L., Hui-Ying, X., Zun-Ping, K., Jin-Lian, C. & Li-Juan, J. (2015). CRISPR-Cas9: a new and promising player in gene therapy. Journal of Medical Genetics, 52(5), 289–296. https://doi.org/10.1136/jmedgenet-2014-102968.

Zaib, S., Saleem, M. A. & Khan, I. (2022). CRISPR-Cas9 genome engineering: trends in medicine and health. Mini-Reviews in Medicinal Chemistry, 22(3), 410–421.

Downloads

Published

2023-07-31

How to Cite

Ikwuka, A. O., Musa, S., Udeh, F. C., Musa, A. A., & Chukwuezie, U. C. (2023). CRISPR-Cas9 Genomic Editing as an Innovation in the Management of Sickle Cell Disease: A Systematic Review. American Journal of Medical Science and Innovation, 2(2), 44–56. https://doi.org/10.54536/ajmsi.v2i2.1760