A Review on the Management of Strontium-90 Waste in Medical Facilities

Authors

  • Hassan Mansaray Radiological Safety, Trinity College Dublin, University of Dublin, Ireland
  • Saidu Kamara Department of Engineering, Faculty of Engineering and Technology, Ernest Bai Koroma University of Science and Technology, Magburaka, Sierra Leone & Nuclear Safety and Radiation Protection Authority, Liverpool Street, Freetown, Sierra Leone

DOI:

https://doi.org/10.54536/ajmsi.v4i2.5788

Keywords:

Environment, Health, Hospitals, Radioactive Waste, Radionuclide, Strontium-90

Abstract

Healthcare facilities generate a large amount of waste, which is considered potentially dangerous. Hospitals are increasingly using radioactive isotopes for diagnostic and therapeutic applications. Isotopes are utilized in different applications of life purposes such as nuclear medicine, radiotherapy, and in industry. Radioactive waste is any material that contains or is mixed with a radionuclide that poses a radiation level that exceeds the IAEA recommended level or that of a national regulatory body. Today, the problem of radioactive waste is one of the biggest threats to human beings, as its effects extend to the environment, natural resources, animals, plants, and soil. Strontium-90 is one of the radioisotopes used in hospitals. Most of the hospital’s radioactive waste is generated in the Nuclear Medicine department. Strontium-90 is a radioactive isotope that is considered one of the most hazardous radioactive isotopes. This study focuses on the use of strontium-90 in medical facilities and how the wastes generated are sustainably managed for human safety and the environment. The applications, waste generation, tests, effects on human health and the environment, and the treatment processes of strontium-90 waste have been studied. The treatment processes, such as forward osmosis membrane, crystalline inorganic ion exchanges, etc, of strontium-90 waste in a hospital are detailed in this review.

Downloads

Download data is not yet available.

References

Ahmadpour, A., Zabihi, M., Tahmasbi, M., & Bastami, T. R. (2010). Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. Journal of hazardous materials, 182(1-3), 552-556.

Ahmed, A. B. A. (2001). Evaluation of management of radioactive waste in nuclear medicine department of radiation and isotopes center, Khartoum.

Ali, M., Wang, W., Chaudhry, N., & Geng, Y. (2017). Hospital waste management in developing countries: A mini review. Waste Management & Research, 35(6), 581-592.

Azman, M. A. N., Goh, P. S., Ismail, A. F., Jamaluddin, K., Wong, K. Y., & Sahril, A. S. (2024). Forward osmosis as a contemporary treatment solution for mitigating radionuclide pollution in water bodies. Journal of Environmental Chemical Engineering, 112542.

Banerjee, S., Basu, S., Baheti, A. D., Kulkarni, S., Rangarajan, V., Nayak, P.,…Agarwal, J. (2022). Radiation and radioisotopes for human healthcare applications. Curr. Sci, 123, 1-10.

Banerjee, S., & Mitra, S. (2013). Radioactive and hospital waste management: A review. International Journal of Latest Trends in Engineering and Technology (IJLTET), 3(1), 275-282.

Başçetin, E., & Atun, G. (2006). Adsorption behavior of strontium on binary mineral mixtures of montmorillonite and kaolinite. Applied Radiation and Isotopes, 64(8), 957-964.

Blandin, G., Ferrari, F., Lesage, G., Le-Clech, P., Héran, M., & Martinez-Lladó, X. (2020). Forward osmosis as concentration process: Review of opportunities and challenges. Membranes, 10(10), 284.

Burger, A., & Lichtscheidl, I. (2019). Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Science of the Total Environment, 653, 1458-1512.

Burov, G. (2023). Bone Metastasis Treatment with Ra223, Treatment Performance, Disease Stabilization and Clinical Outcome Lithuanian University of Health Sciences (Lithuania)].

CENA, B., & HASI, N. (2024). Handling of radioactive waste from the use of radionuclides in hospitals. International Journal of Computational and Experimental Science and Engineering, 10(2), 207-214.

Chakravarty, R., & Dash, A. (2012). Availability of yttrium-90 from strontium-90: a nuclear medicine perspective. Cancer Biotherapy and Radiopharmaceuticals, 27(10), 621-641.

Chatterjee, S., Mitra, A., Walther, C., & Gupta, D. K. (2020). Plant response under strontium and phytoremediation. Strontium Contamination in the Environment, 85-97.

Chekli, L., Phuntsho, S., Shon, H. K., Vigneswaran, S., Kandasamy, J., & Chanan, A. (2012). A review of draw solutes in forward osmosis process and their use in modern applications. Desalination and Water Treatment, 43(1-3), 167-184.

Chinweike-Umeh, S., Ekwunife, C., & Onwuachusi, G. Cancer Genetic Markers Among School Children in Relation to Urogenital Schistosomiasis.

Chitnis, V., Vaidya, K., & Chitnis, D. (2005). Biomedical waste in laboratory medicine: Audit and management. Indian Journal of Medical Microbiology, 23(1), 6-13.

Cook, E., Woolridge, A., Stapp, P., Edmondson, S., & Velis, C. A. (2023). Medical and healthcare waste generation, storage, treatment and disposal: a systematic scoping review of risks to occupational and public health. Critical Reviews in Environmental Science and Technology, 53(15), 1452-1477.

Cortina, J. L., & Warshawsky, A. (2021). Developments in solid-liquid extraction by solvent-impregnated resins. Ion exchange and solvent extraction, 195-293.

Cristofaro, F. (2017). Effects on bone remodeling by strontium-containing nanoparticles.

Dai, X., Cui, Y., & Kramer-Tremblay, S. (2013). A rapid method for determining strontium-90 in urine samples. Journal of Radioanalytical and Nuclear Chemistry, 296, 363-368.

Darda, S. A., Gabbar, H. A., Damideh, V., Aboughaly, M., & Hassen, I. (2021). A comprehensive review on radioactive waste cycle from generation to disposal. Journal of Radioanalytical and Nuclear Chemistry, 329(1), 15-31.

Das, A. K., Islam, M. N., Billah, M. M., & Sarker, A. (2021). COVID-19 pandemic and healthcare solid waste management strategy–A mini-review. Science of the Total Environment, 778, 146220.

Derib, B. (2017). Evaluation, Characterization and management of Naturally Occurring Radioactive Materials and disused radioactive waste in Water and Soil Samples.

Domenech, H. (2017). Radiation safety. Managment and Programs. Suiza: Springer.

Dresler, S., Wójciak-Kosior, M., Sowa, I., Strzemski, M., Sawicki, J., Kováčik, J., & Blicharski, T. (2018). Effect of long-term strontium exposure on the content of phytoestrogens and allantoin in soybean. International journal of molecular sciences, 19(12), 3864.

Figueiredo, B. R., Cardoso, S. P., Portugal, I., Rocha, J., & Silva, C. M. (2018). Inorganic ion exchangers for cesium removal from radioactive wastewater. Separation & Purification Reviews, 47(4), 306-336.

Freed, R. (2002). Migration of Strontium-90 in surface water, groundwater and sediments of the Borschi watershed, Chernobyl University of British Columbia].

Froidevaux, P., Geering, J.-J., & Valley, J.-F. (2006). 90Sr in deciduous teeth from 1950 to 2002: the Swiss experience. Science of the Total Environment, 367(2-3), 596-605.

Gao, Y., Lyu, L., Feng, Y., Li, F., & Hu, Y. (2021). A review of cutting-edge therapies for hepatocellular carcinoma (HCC): perspectives from patents. International journal of medical sciences, 18(14), 3066.

Genter, M. B. (2012). Magnesium, calcium, strontium, barium, and radium. Patty’s toxicology, 145-166.

Ghaemi, A., Torab-Mostaedi, M., & Ghannadi-Maragheh, M. (2011). Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. Journal of hazardous materials, 190(1-3), 916-921.

Glasco, A. D., Snyder, L. A., Paunesku, T., Howard, S. C., Hooper, D. A., Golden, A. P., & Woloschak, G. E. (2024). Revisiting the Historic Strontium-90 Ingestion Beagle Study Conducted at the University of California Davis: Opportunity in Archival Materials. Radiation research, 202(2), 289-308.

Gould, J. M., Sternglass, E. J., Sherman, J. D., Brown, J., McDonnell, W., & Mangano, J. J. (2000). Strontium-90 in deciduous teeth as a factor in early childhood cancer. International Journal of Health Services, 30(3), 515-539.

Gupta, D. K., Deb, U., Walther, C., & Chatterjee, S. (2017). Strontium in the ecosystem: transfer in plants via root system. In Behaviour of Strontium in Plants and the Environment (pp. 1-18). Springer.

Gupta, D. K., Deb, U., Walther, C., & Chatterjee, S. (2018). Strontium in the ecosystem: transfer in plants via root system. Behaviour of Strontium in Plants and the Environment, 1-18.

Herrero Álvarez, N., Bauer, D., Hernández-Gil, J., & Lewis, J. S. (2021). Recent advances in radiometals for combined imaging and therapy in cancer. ChemMedChem, 16(19), 2909-2941.

Hobbs, D., Barnes, M., Pulmano, R., Marshall, K., Edwards, T., Bronikowski, M., & Fink, S. (2005). Strontium and actinide separations from high level nuclear waste solutions using monosodium titanate 1. Simulant testing. Separation Science and Technology, 40(15), 3093-3111.

Holt, E., Evans, J. A., & Madgwick, R. (2021). Strontium (87Sr/86Sr) mapping: a critical review of methods and approaches. Earth-Science Reviews, 216, 103593.

Hooshmand, S., Kargozar, S., Ghorbani, A., Darroudi, M., Keshavarz, M., Baino, F., & Kim, H.-W. (2020). Biomedical waste management by using nanophotocatalysts: The need for new options. Materials, 13(16), 3511.

Hou, X., & Roos, P. (2008). Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Analytica chimica acta, 608(2), 105-139.

İnan, S. (2022). Inorganic ion exchangers for strontium removal from radioactive waste: a review. Journal of Radioanalytical and Nuclear Chemistry, 331(3), 1137-1154.

İnan, S., & Hiçsönmez, Ü. (2022). Adsorption studies of radionuclides by Turkish minerals: A review. Journal of the Turkish Chemical Society Section A: Chemistry, 9(2), 579-600.

Kadadou, D., Said, E. A., Ajaj, R., & Hasan, S. W. (2023). Research advances in nuclear wastewater treatment using conventional and hybrid technologies: Towards sustainable wastewater reuse and recovery. Journal of Water Process Engineering, 52, 103604.

Kessides, I. N. (2012). The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise. Energy Policy, 48, 185-208.

Kołodziejska, B., Stępień, N., & Kolmas, J. (2021). The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. International journal of molecular sciences, 22(12), 6564.

Koshy, N., & Pathak, P. (2019). Removal of strontium by physicochemical adsorptions and ion exchange methods. Strontium Contamination in the Environment, 185-202.

L. Parus, J., & Mikolajczak, R. (2012). Beta-emitting radionuclides for peptide receptor radionuclide therapy. Current Topics in Medicinal Chemistry, 12(23), 2686-2693.

Lee, B., Choi, J.-H., Lee, K. R., Kang, H. W., Eom, H. J., Shin, K., & Park, H.-S. (2022). Separation and purification of Sr-90 nuclide from a waste mixture. Journal of Radioanalytical and Nuclear Chemistry, 331(1), 275-281.

Lee, S., Kim, Y., Park, J., Shon, H. K., & Hong, S. (2018). Treatment of medical radioactive liquid waste using Forward Osmosis (FO) membrane process. Journal of Membrane Science, 556, 238-247.

Lepareur, N., Ramée, B., Mougin-Degraef, M., & Bourgeois, M. (2023). Clinical advances and perspectives in targeted radionuclide therapy. Pharmaceutics, 15(6), 1733.

Li, B., & Chen, M. (2024). A comprehensive review on treatment technologies of spent ion exchange resins in nuclear power plants. Journal of Environmental Chemical Engineering, 114116.

Li, H., Han, K., Shang, J., Cai, W., Pan, M., Xu, D.,…Zuo, R. (2022). Comparison of adsorption capacity and removal efficiency of strontium by six typical adsorption materials. Sustainability, 14(13), 7723.

Liberal, F. D. G., Tavares, A. A. S., & Tavares, J. M. R. (2016). Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Applied Radiation and Isotopes, 110, 87-99.

Liu, H., Long, J., Zhang, K., Li, M., Zhao, D., Song, D., & Zhang, W. (2024). Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. Science of the Total Environment, 174180.

Luhar, I., Luhar, S., Abdullah, M. M. A. B., Razak, R. A., Vizureanu, P., Sandu, A. V., & Matasaru, P.-D. (2021). A state-of-the-art review on innovative geopolymer composites designed for water and wastewater treatment. Materials, 14(23), 7456.

Maddheshiya, R., Dhiman, S., & Gupta, H. (2025). Emerging Contaminants in Wastewater and Their Treatment Plans: A Major Focus on Radioactive Components Emitted from Medical Waste. In Emerging Contaminants in Water and Wastewater: Sources and Substances (pp. 87-105). Springer.

Maqsood, A. (2023). Evaluation of Occupational Health and Safety and Process Risk Assessment of the Medical WasteIncinerator Located in Lahore © Lahore School Of Economics].

Marinin, D. V., & Brown, G. N. (2000). Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management, 20(7), 545-553.

Marx, D., Yazdi, A. R., Papini, M., & Towler, M. (2020). A review of the latest insights into the mechanism of action of strontium in bone. Bone reports, 12, 100273.

Menon, S., & Kumar LS, V. (2019). Weaponizing radioactive medical waste-The looming threat. International Journal of Nuclear Security, 5(1), 4.

Mol, M. P. G., Zolnikov, T. R., Neves, A. C., Dos Santos, G. R., Tolentino, J. L. L., de Vasconcelos Barros, R. T., & Heller, L. (2022). Healthcare waste generation in hospitals per continent: a systematic review. Environmental Science and Pollution Research, 29(28), 42466-42475.

Moore, J. J. (2018). Novel decontamination materials for use in the civil nuclear industry. The University of Manchester (United Kingdom).

Moyen, C., & Roblin, G. (2010). Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: comparison with Ca effects. Environmental and Experimental Botany, 68(3), 247-257.

Muchtaridi, M., Kamal, E., Subarnas, A., & Mutalib, A. (2017). Application of Ion-Exchange Resin Column for Basic Development of Strontium-90/Yttrium-90 Generator for Preparation of Radiopharmaceutical Therapy. Indonesian Journal of Chemistry, 17(1), 15-21.

Mukherjee, S., & Mishra, M. (2021). Application of strontium-based nanoparticles in medicine and environmental sciences. Nanotechnology for Environmental Engineering, 6(2), 25.

Neal, A., Irwin, C., & Hope-Stone, H. (1991). The role of strontium-90 beta irradiation in the management of pterygium. Clinical oncology, 3(2), 105-109.

Nedobukh, T. A., & Semenishchev, V. S. (2019). Strontium: source, occurrence, properties, and detection. In Strontium Contamination in the Environment (pp. 1-23). Springer.

Ohiduzzaman, M., Khatun, R., Reza, S., Kadir, M., Akter, S., Uddin, M.,…Billah, M. (2019). Thyroid uptake of Tc-99m and its agreement with I-131 for evaluation of hyperthyroid function. situations, 5(6).

Pabby, A., Swain, B., Sonar, N., Mittal, V., Valsala, T., Ramsubramanian, S.,…Pradhan, S. (2022). Radioactive waste processing using membranes: state of the art technology, challenges and perspectives. Separation & Purification Reviews, 51(2), 143-173.

Padmanabhan, K., & Barik, D. (2019). Health hazards of medical waste and its disposal. In Energy from toxic organic waste for heat and power generation (pp. 99-118). Elsevier.

Pant, G. S. (2021). Radiation Safety in Nuclear Medicine. In Basic Sciences of Nuclear Medicine (pp. 29-46). Springer.

Pathak, P., & Gupta, D. K. (2020). Strontium contamination in the environment (Vol. 88). Springer.

Payolla, F. B., Massabni, A. C., & Orvig, C. (2019). Radiopharmaceuticals for diagnosis in nuclear medicine: A short review. Eclética Química, 44(3), 11-19.

Peters, T., Barnes, M., Hobbs, D., Walker, D., Fondeur, F., Norato, M.,…Pulmano, R. (2006). Strontium and actinide separations from high level nuclear waste solutions using monosodium titanate 2. Actual waste testing. Separation Science and Technology, 41(11), 2409-2427.

Pichestapong, P., Sriwiang, W., & Injarean, U. (2016). Separation of Yttrium-90 from Strontium-90 by extraction chromatography using combined Sr resin and RE resin. Energy Procedia, 89, 366-372.

Popa, K., & Pavel, C. C. (2012). Radioactive wastewaters purification using titanosilicates materials: State of the art and perspectives. Desalination, 293, 78-86.

Ppoletiko, C., Lemercier, R., Leiba, B., & Llug, P. (1994). Measurement of strontium-90 by the Cerenkov counting technique. Journal of Radioanalytical and Nuclear Chemistry, 178(1), 131-141.

Puspita, T. D., Moersidik, S. S., & Pratama, M. A. (2023). Radiological study of a wastewater treatment plant associated with radioiodine therapy at a hospital in West Java, Indonesia. Journal of Radiological Protection, 43(3), 031506.

Qin, X.-j., Chen, H.-m., Guo, L., & Guo, Y.-y. (2012). Low-dose strontium-90 irradiation is effective in preventing the recurrence of pterygia: a ten-year study.

Rahman, R. A., Ibrahium, H., & Hung, Y.-T. (2011). Liquid radioactive wastes treatment: a review. Water, 3(2), 551-565.

Rahnemaie, R., Hiemstra, T., & van Riemsdijk, W. H. (2006). Inner-and outer-sphere complexation of ions at the goethite–solution interface. Journal of Colloid and Interface Science, 297(2), 379-388.

Rao, T. S., Panigrahi, S., & Velraj, P. (2022). Transport and disposal of radioactive wastes in nuclear industry. In Microbial biodegradation and bioremediation (pp. 419-440). Elsevier.

Ravichandran, R. (2017). Management of radioactive wastes in a hospital environment. Modelling Trends in Solid and Hazardous Waste Management, 1-14.

Ravichandran, R., Binukumar, J., Sreeram, R., & Arunkumar, L. (2011). An overview of radioactive waste disposal procedures of a nuclear medicine department. Journal of Medical Physics, 36(2), 95-99.

Rokka, D., & Khanal, N. (2023). Job satisfaction of health professionals working in governmental tertiary level hospitals of Nepal. American Journal of Medical Science and Innovation, 2(1), 39-46.

Ru, X., Yang, L., Shen, G., Wang, K., Xu, Z., Bian, W.,…Guo, Y. (2024). Microelement strontium and human health: comprehensive analysis of the role in inflammation and non-communicable diseases (NCDs). Frontiers in Chemistry, 12, 1367395.

Sadi, B. B., Li, C., Jodayree, S., Lai, E. P., Kochermin, V., & Kramer, G. H. (2010). A rapid bioassay method for the determination of 90Sr in human urine sample. Radiation protection dosimetry, 140(1), 41-48.

Salih, S., Alkatheeri, A., Alomaim, W., & Elliyanti, A. (2022). Radiopharmaceutical treatments for cancer therapy, radionuclides characteristics, applications, and challenges. Molecules, 27(16), 5231.

Sancho, M., Arnal, J., & García-Fayos, B. (2013). Treatment of hospital radioactive liquid wastes from RIA (radioimmunoassay) by membrane technology. Desalination, 321, 110-118.

Savva, S. (2016). New materials for strontium removal from nuclear waste streams University of Birmingham].

Sdiri, A. (2018). Physicochemical characterization of natural dolomite for efficient removal of lead and cadmium in aqueous systems. Environmental Progress & Sustainable Energy, 37(6), 2034-2041.

Semenishchev, V. S., & Voronina, A. V. (2019). Isotopes of strontium: properties and applications. In Strontium Contamination in the Environment (pp. 25-42). Springer.

Semenishchev, V. S., & Voronina, A. V. (2020). Isotopes of strontium: Properties and applications. Strontium Contamination in the Environment, 25-42.

Sgouros, G., Bodei, L., McDevitt, M. R., & Nedrow, J. R. (2020). Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nature reviews Drug discovery, 19(9), 589-608.

Shahadat, M., & Isamil, S. (2018). Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC advances, 8(43), 24571-24587.

Sharma, S. (2019a). Uptake, transport, and remediation of strontium. In Strontium Contamination in the Environment (pp. 99-119). Springer.

Sharma, S. (2019b). Uptake, transport, and remediation of strontium. Strontium Contamination in the Environment, 99-119.

Shiraishi, K., Ko, S., Arae, H., & Ayama, K. (2007). Rapid analysis technique for strontium, thorium, and uranium in urine samples. Journal of Radioanalytical and Nuclear Chemistry, 273(2), 307-310.

Stefanovsky, S. V., & Yudintsev, S. V. (2016). Titanates, zirconates, aluminates and ferrites as waste forms for actinide immobilization. Russian Chemical Reviews, 85(9), 962.

Tayeb, M. (2015). Development of rapid methodologies for the determination of strontium-90 in water using triple-to-double coincidence ratio (TDCR) Cerenkov counting and liquid scintillation assay techniques.

Tayeb, M., Dai, X., & Sdraulig, S. (2016). Rapid and simultaneous determination of Strontium-89 and Strontium-90 in seawater. Journal of Environmental Radioactivity, 153, 214-221.

Tiwari, D., & Lee, S.-M. (2015). Physico-chemical studies in the removal of Sr (II) from aqueous solutions using activated sericite. Journal of Environmental Radioactivity, 147, 76-84.

Tolstykh, E., Degteva, M., Kozheurov, V., Shishkina, E., Romanyukha, A., … & Jacob, P. (2000). Strontium metabolism in teeth and enamel dose assessment: analysis of the Techa river data. Radiation and environmental biophysics, 39(3), 161-171.

Tomita, J., & Takeuchi, E. (2019). Rapid analytical method of 90Sr in urine sample: Rapid separation of Sr by phosphate co-precipitation and extraction chromatography, followed by determination by triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). Applied Radiation and Isotopes, 150, 103-109.

Tsai, C.-J., Cheng, C.-Y., Shen, D. H.-Y., Kuo, S. J., Wang, L.-Y., Lee, C.-H., … & Huang, W.-S. (2016). Tc-99m imaging in thyroidectomized differentiated thyroid cancer patients immediately before I-131 treatment. Nuclear medicine communications, 37(2), 182-187.

Vajda, N., & Kim, C.-K. (2010). Determination of radiostrontium isotopes: a review of analytical methodology. Applied Radiation and Isotopes, 68(12), 2306-2326.

Wang, J.-J., Chen, J., & Chiu, J.-H. (2004). Sequential isotopic determination of plutonium, thorium, americium, strontium and uranium in environmental and bioassay samples. Applied Radiation and Isotopes, 61(2-3), 299-305.

Wang, P., Yu, S., Zou, H., Lou, X., Ren, H., Zhou, L.,…Xu, Q. (2023). Levels, sources, variations, and human health risk assessment of 90Sr and 137Cs in water and food around Sanmen Nuclear Power Plant (China) from 2011 to 2020. Frontiers in Public Health, 11, 1136623.

Wei, Y., Cao, L., Zhu, J., Wang, L., Yao, H., Sun, H.,…Ni, S. (2024). Radioactive strontium ions sieving through reduced graphene oxide membrane. Journal of Membrane Science, 689, 122181.

Xing, M., Zhuang, S., & Wang, J. (2019). Adsorptive removal of strontium ions from aqueous solution by graphene oxide. Environmental Science and Pollution Research, 26(29), 29669-29678.

Yeong, C.-H., Cheng, M.-h., & Ng, K.-H. (2014). Therapeutic radionuclides in nuclear medicine: current and future prospects. Journal of Zhejiang University. Science. B, 15(10), 845.

Yudintsev, S. (2021). Isolation of separated waste of nuclear industry. Radiochemistry, 63, 527-555.

Zhan, L., Bo, Y., Lin, T., & Fan, Z. (2021). Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews, 34, 100630.

Zhang, Y., Kong, L., Ionescu, M., & Gregg, D. J. (2022). Current advances on titanate glass-ceramic composite materials as waste forms for actinide immobilization: A technical review. Journal of the European Ceramic Society, 42(5), 1852-1876.

Zikhathile, T., Atagana, H., Bwapwa, J., & Sawtell, D. (2022). A review of the impact that healthcare risk waste treatment technologies have on the environment. International journal of environmental research and public health, 19(19), 11967.

Downloads

Published

2025-10-22

How to Cite

Mansaray, H., & Kamara, S. (2025). A Review on the Management of Strontium-90 Waste in Medical Facilities. American Journal of Medical Science and Innovation, 4(2), 89–97. https://doi.org/10.54536/ajmsi.v4i2.5788