Artificial Intelligence Applications in the Diagnosis and Treatment of Bacterial Infections
DOI:
https://doi.org/10.54536/ajmsi.v4i2.5420Keywords:
Artificial Intelligence, Bacterial Diagnostics, Bacterial Infections, Knowledge Engineering, MALDI-TOF, PersonalizationAbstract
In today’s era Artificial Intelligence (AI) is the fruitful and informative tool to treat the bacterial infections. AI features provide the outcomes more effectively, accurately, manifest the disease parameters in shorter period of time which results in safe and potential life. Knowledge Engineering (KE)-based approaches have confirmed in cost-effective, reduce dependency on particular structure and detect the bacterial infection by various mode of testing machines like antimicrobial susceptibility testing (AST) by leveraging machine learning models, Support Vector Machines (SVM), and deep learning architectures such as Convolutional Neural Networks (CNNs) and transformers. Thus, it also enables the bacterial detection through Smartphone-integrated platforms and telemedicine applications. These integrated platforms will help in the research of drugs and vaccines that can use in the antibiotics resistance treatment. Furthermore, AI technology has a widespread deployment in detection of the bacterial resistance strains, transforming the bacterial infection. Its algorithms can easier analyze various data sources like genomic data, clinical data and capture of proper image helps to identify the different bacterial species and strains. AI also assist in the applications of laboratory diagnostics and clinical microbiology to recognize the Gram Positive Or Gram Negative bacteria by plate counting, mass spectrometry for example, MALDI-TOF MS data which accurately classifies different Staphylococcus aureus subspecies. Morphology-based and motion-based microscopic detection, holographic microscopy, colorimetric and fluorescence detection, electrochemical sensors, Raman and Surface-Enhanced Raman Spectroscopy (SERS), and Atomic Force Microscopy (AFM) and AST all these methodologies help in bacterial diagnosis, offering improved precision, reduce the time period between sampling and result resolution. It is very useful novel technique in finding the new antibiotics and to localize the site of action that is directly deliver the drug to the targeted site. AI tool act as a right hand for medical researchers, doctors, nurses that provide best result to overcome the challenges in bacterial infection cure, reduced the side effects; improves patient –compliance and promote healthy life with proper personalization.
Downloads
References
Abbasi, B. A., Saraf, D., Sharma, T., Sinha, R., Singh, S., Sood, S., et al. (2022). Identification of vaccine targets & design of vaccine against SARS-CoV-2 coronavirus using computational and deep learning-based approaches. PeerJ, 10, e13380. https://doi.org/10.7717/peerj.13380
Abu-Aqil, G., Lapidot, I., Salman, A., & Huleihel, M. (2023). Quick detection of Proteus and Pseudomonas in patients’ urine and assessing their antibiotic susceptibility using infrared spectroscopy and machine learning. Sensors, 23(8132). https://doi.org/10.3390/s23198132
Adams, C., Beller, E., Clark, J., & Tsafnat, G. (n.d.). Making progress with the automation of systematic reviews: Principles of the International Collaboration for the Automation of Systematic Reviews (ICASR).
Aggarwal, S., Dhall, A., Patiyal, S., Choudhury, S., Arora, A., & Raghava, G. P. S. (2023). An ensemble method for prediction of phage-based therapy against bacterial infections. Frontiers in Microbiology, 14, 1148579. https://doi.org/10.3389/fmicb.2023.1148579
Alami, H., Lehoux, P., Denis, J.-L., Motulsky, A., Petitgand, C., & Savoldelli, M. (2020). Organizational readiness for artificial intelligence in health care: Insights for decision-making and practice. Journal of Health Organization and Management, 35, 106–114. https://doi.org/10.1108/JHOM-03-2020-0074
Aljaaf, A. J., Al-Jumeily, D., Hussain, A. J., Fergus, P., Al-Jumaily, M., & Abdel-Aziz, K. (n.d.). Toward an optimal use of artificial intelligence techniques within a clinical decision support system.
American Society for Microbiology. (2016). Biochemical tests for the identification of aerobic bacteria. In Clinical Microbiology Procedures Handbook (Vol. 3.17.1.1–3.17.48.3). https://doi.org/10.1128/9781555818814.ch3.17.1
Andrews, D., Chetty, Y., Cooper, B. S., Virk, M., Glass, S. K., Letters, A., Kelly, P. A., Sudhanva, M., & Jeyaratnam, D. (2017). Multiplex PCR point of care testing versus routine, laboratory-based testing in the treatment of adults with respiratory tract infections: A quasi-randomised study assessing impact on length of stay and antimicrobial use. BMC Infectious Diseases, 17, 671. https://doi.org/10.1186/s12879-017-2784-z
Avni, T., Bieber, A., Green, H., Steinmetz, T., Leibovici, L., & Paul, M. (2016). Diagnostic accuracy of PCR alone and compared to urinary antigen testing for detection of Legionella spp.: A systematic review. Journal of Clinical Microbiology, 54(2), 401–411. https://doi.org/10.1128/JCM.02675-15
Baggett, H. C., Rhodes, J., Dejsirilert, S., Salika, P., Wansom, T., Jorakate, P., Kaewpan, A., Olsen, S. J., Maloney, S. A., & Peruski, L. F. (2012). Pneumococcal antigen testing of blood culture broth to enhance the detection of Streptococcus pneumoniae bacteremia. European Journal of Clinical Microbiology & Infectious Diseases, 31(5), 753–756. https://doi.org/10.1007/s10096-011-1370-3
Baker, J., Timm, K., Faron, M., Ledeboer, N., & Culbreath, K. (2020). Digital image analysis for the detection of group B Streptococcus from ChromID Strepto B medium using PhenoMatrix algorithms. Journal of Clinical Microbiology, 59, e01902-19. https://doi.org/10.1128/JCM.01902-19
Bean, H. D. (2012). Bacterial volatile discovery using solid-phase microextraction and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. https://doi.org/10.1016/j.jchromb.2012.03.021
Berke, A., & Tilton, R. C. (1986). Evaluation of rapid coagulase methods for the identification of Staphylococcus aureus. Journal of Clinical Microbiology, 23, 916–919.
Bilgin, G. B., Bilgin, C., Burkett, B. J., Orme, J. J., Childs, D. S., & Thorpe, M. P. (2024). Theranostics and artificial intelligence: New frontiers in personalized medicine. Theranostics, 14, 2367–2378. https://doi.org/10.7150/thno.94788
Burkovski, A. (2022). Host–pathogen interaction 3.0. International Journal of Molecular Sciences, 23, 12811. https://doi.org/10.3390/ijms232112811
Cath, C. (2018). Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180080. https://doi.org/10.1098/rsta.2018.0080
Centers for Disease Control and Prevention. (2022). COVID-19: U.S. Impact on antimicrobial resistance, special report 2022. https://doi.org/10.15620/cdc:117915
Cheng, J., & Druzdzel, M. J. (2000). AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research, 13, 155–188. https://doi.org/10.1613/jair.650
Cherkaoui, A., Renzi, G., Charretier, Y., Blanc, D. S., Vuilleumier, N., & Schrenzel, J. (2019). Automated incubation and digital image analysis of chromogenic media using Copan WASPLab enables rapid detection of vancomycin-resistant Enterococcus. Frontiers in Cellular and Infection Microbiology, 9, 379. https://doi.org/10.3389/fcimb.2019.00379
Cisek, A. A., Dąbrowska, I., Gregorczyk, K. P., & Wyżewski, Z. (2017). Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. Current Microbiology, 74(3), 277–283. https://doi.org/10.1007/s00284-016-1166-x
Couturier, M. R., Graf, E. H., & Griffin, A. T. (2014). Urine antigen tests for the diagnosis of respiratory infections: Legionellosis, histoplasmosis, pneumococcal pneumonia. Clinical Laboratory Medicine, 34(2), 219–236. https://doi.org/10.1016/j.cll.2014.02.002
D’Haen, J. (n.d.). Integrating expert knowledge and multilingual web crawling data in a lead qualification system.
Deelder, W., Napier, G., Campino, S., Palla, L., Phelan, J., & Clark, T. G. (2022). A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis. BMC Genomics, 23, 46. https://doi.org/10.1186/s12864-022-08291-4
Deusenbery, C., Wang, Y., & Shukla, A. (2021). Recent innovations in bacterial infection detection and treatment. ACS Infectious Diseases, 7(3), 695–720. https://doi.org/10.1021/acsinfecdis.0c00890
Dou, X., Yang, F., Wang, N., Xue, Y., Hu, H., & Li, B. (2023). Rapid detection and analysis of Raman spectra of bacteria in multiple fields of view based on image stitching technique. Frontiers in Bioscience-Landmark, 28, 249. https://doi.org/10.31083/j.fbl2810249
Dwivedi, Y. K., Hughes, D. L., Coombs, C., Constantiou, I., Duan, Y., Edwards, J. S., Gupta, B., Lal, B., Misra, S., Prashant, P., & Raman, R. (2020). Impact of COVID-19 pandemic on information management research and practice: Transforming education, work and life. International Journal of Information Management, 55, 102211. https://doi.org/10.1016/j.ijinfomgt.2020.102211
Ekins, S., Godbole, A. A., Kéri, G., Orfi, L., Pato, J., & Bhat, R. S. (2017). Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I. Tuberculosis (Edinburgh), 103, 52–60. https://doi.org/10.1016/j.tube.2017.01.005
Ernst, D., Bolton, G., Recktenwald, D., Cameron, M. J., Danesh, A., & Persad, D. (2006). Bead-based flow cytometric assays: A multiplex assay platform with applications in diagnostic microbiology. In Advanced Techniques in Diagnostic Microbiology (pp. 427–443). Springer US. https://doi.org/10.1007/978-0-387-32892-4_23
Gilbert, G. L., & Kerridge, I. (2020). Hospital infection prevention and control (IPC) and antimicrobial stewardship (AMS): Dual strategies to reduce antibiotic resistance (ABR) in hospitals. In Ethics and drug resistance: Collective responsibility for global public health (pp. 89–108). Springer. https://doi.org/10.1007/978-3-030-27874-8_6
Goodswen, S. J., Barratt, J. L. N., Kennedy, P. J., Kaufer, A., Calarco, L., & Ellis, J. T. (2021). Machine learning and applications in microbiology. FEMS Microbiology Reviews, 45(3), fuab015. https://doi.org/10.1093/femsre/fuab015
Ho, C.-S., Jean, N., Hogan, C. A., Blackmon, L., Jeffrey, S. S., & Holodniy, M. (2019). Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nature Communications, 10, 4927. https://doi.org/10.1038/s41467-019-12898-9
Howard, A., Aston, S., Gerada, A., Reza, N., Bincalar, J., & Mwandumba, H. (2024). Antimicrobial learning systems: An implementation blueprint for artificial intelligence to tackle antimicrobial resistance. The Lancet Digital Health, 6(2), e79–e86. https://doi.org/10.1016/S2589-7500(23)00221-2
Hummel, P., & Braun, M. (2020). Just data? Solidarity and justice in data-driven medicine. Life Sciences, Society and Policy, 16, 8. https://doi.org/10.1186/s40504-020-00101-7
Hutchinson, D., Kunasekaran, M., Quigley, A., Moa, A., & MacIntyre, C. R. (2023). Could it be Monkeypox? Use of an AI-based epidemic early warning system to monitor rash and fever illness. Public Health, 220, 142–147. https://doi.org/10.1016/j.puhe.2023.05.010
Kassis, C., Zaidi, S., Kuberski, T., Moran, A., Gonzalez, O., & Hussain, S. (2015). Role of Coccidioides antigen testing in the cerebrospinal fluid for the diagnosis of coccidioidal meningitis. Clinical Infectious Diseases, 61(10), 1521–1526. https://doi.org/10.1093/cid/civ585
Kaufmann, E., Chacon, A., Kausel, E. E., Herrera, N., & Reyes, T. (2023). Task-specific algorithm advice acceptance: A review and directions for future research. Data and Information Management, 7(1), 100040. https://doi.org/10.1016/j.dim.2023.100040
Khaledi, A., Schniederjans, M., Pohl, S., Rainer, R., Bodenhofer, U., & Xia, B. Y. (n.d.). Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa.
King, K. P. (2009). The handbook of the evolving research of transformative learning: Based on the Learning Activities Survey. Information Age Publishing.
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
Ledro, C., Nosella, A., & Vinelli, A. (2022). Artificial intelligence in customer relationship management: Literature review and future research directions. Journal of Business & Industrial Marketing, 37(13), 48–63. https://doi.org/10.1108/JBIM-02-2021-0092
Liu, G. (2023). Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nature Chemical Biology, 19, 1342–1350. https://doi.org/10.1038/s41589-023-01349-8
Miner, A. S. (2020). Chatbots in the fight against the COVID-19 pandemic. NPJ Digital Medicine, 3, 65. https://doi.org/10.1038/s41746-020-0280-0
Mintz, Y., & Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally Invasive Therapy & Allied Technologies, 28(2), 73–81. https://doi.org/10.1080/13645706.2019.1575864
Mizuno, S., Iwami, M., Kunisawa, S., Naylor, N., Yamashita, K., Kyratsis, Y., et al. (2018). Comparison of national strategies to reduce meticillin-resistant Staphylococcus aureus infections in Japan and England. Journal of Hospital Infection, 100(3), 280–298. https://doi.org/10.1016/j.jhin.2018.06.026
Oh, J. (2018); Tilton, S. C., & Johnson, M. (2019). Assessing susceptibility for polycyclic aromatic hydrocarbon toxicity in an in vitro 3D respiratory model for asthma.
Oh, J., Makar, M., Fusco, C., McCaffrey, R., Rao, K., & Ryan, E. E. (2018). A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Infection Control & Hospital Epidemiology, 39(4), 425–433. https://doi.org/10.1017/ice.2018.16
Østerlund, C., Jarrahi, M. H., Willis, M., Boyd, K., & Wolf, C. T. (2021). Artificial intelligence and the world of work: A co-constitutive relationship. Journal of the Association for Information Science and Technology, 72(1), 128–135. https://doi.org/10.1002/asi.24420
Paquin, P., Durmort, C., Paulus, C., Vernet, T., Marcoux, P. R., & Morales, S. (2022). Spatio-temporal based deep learning for rapid detection and identification of bacterial colonies through lens-free microscopy time-lapses. PLOS Digital Health, 1(1), e0000122. https://doi.org/10.1371/journal.pdig.0000122
Pentina, I., Xie, T., Hancock, A., & Bailey, A. (2023). Consumer–machine relationships in the age of artificial intelligence: Systematic literature review and research directions. Psychology & Marketing. https://doi.org/10.1002/mar.22042
Perkins, M. D., Mirrett, S., & Reller, L. B. (1995). Rapid bacterial antigen detection is not clinically useful. Journal of Clinical Microbiology, 33(6), 1486–1491. https://doi.org/10.1128/jcm.33.6.1486-1491.1995
Porcel, J. M. (2018). Biomarkers in the diagnosis of pleural diseases: A 2018 update. Therapeutic Advances in Respiratory Disease, 12, 1753466618808660. https://doi.org/10.1177/1753466618808660
Rahman, T., Khandakar, A., Rahman, A., Zughaier, S. M., Al Maslamani, M., Chowdhury, M. H., Tahir, A. M., Hossain, M. S. A., & Chowdhury, M. E. H. (2024). TB-CXRNet: Tuberculosis and drug-resistant tuberculosis detection technique using chest X-ray images. Cognitive Computation, 16, 1393–1412. https://doi.org/10.1007/s12559-023-10267-7
Rees, C., & Müller, B. (2022). All that glitters is not gold: Trustworthy and ethical AI principles. AI and Ethics, 3(3), 1241–1254. https://doi.org/10.1007/s43681-022-00232-x
Srivastava, B., & Rossi, F. (2019). Rating AI systems for bias to promote trustable applications.
Talaei-Khoei, A., Yang, A. T., & Masialeti, M. (2024). How does incorporating ChatGPT within a firm reinforce agility-mediated performance? The moderating role of innovation infusion and firms’ ethical identity. Technovation, 132, 102975. https://doi.org/10.1016/j.technovation.2023.102975
Venkatachalam, S., & Ray, A. (2022). How do context-aware artificial intelligence algorithms used in fitness recommender systems? A literature review and research agenda. Journal of Innovation & Knowledge in Emerging Markets. https://doi.org/10.1016/j.jjimei.2022.100139
Viasus, D., Calatayud, L., McBrown, M. V., Ardanuy, C., & Carratalà, J. (2019). Urinary antigen testing in community-acquired pneumonia in adults: An update. Expert Review of Anti-Infective Therapy, 17(2), 107–115. https://doi.org/10.1080/14787210.2019.1565994
Walker, D. H. (2014). Principles of diagnosis of infectious diseases. In Pathobiology of human disease (pp. 222–225). Amsterdam, The Netherlands: Elsevier.
Wan, F. (2024). Deep-learning-enabled antibiotic discovery through molecular de-extinction. Nature Biomedical Engineering. https://doi.org/10.1038/s41551-024-01201-x
Wong, F. (2023). Leveraging artificial intelligence in the fight against infectious diseases. Science, 381(6653), 164–170. https://doi.org/10.1126/science.abq4000
Zulderwijk, A. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 101577. https://doi.org/10.1016/j.giq.2021.101577
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sarabjit Kaur

This work is licensed under a Creative Commons Attribution 4.0 International License.


