Digital Revolution in Medical Pathology: Integrating Ai, Genomics, and Molecular Imaging

Authors

DOI:

https://doi.org/10.54536/ajmsi.v4i2.5281

Keywords:

Artificial Intelligence, Digital Pathology, Genomics, Molecular Imaging, Precision Medicine

Abstract

The current clinical pathologic diagnostic process using histological slide evaluation demonstrates inconsistent accuracy in medical diagnosis. Progress in digital pathology and other modern technologies now enables the utilization of AI for medical image diagnostics, along with genomic technology for profile assessment and molecular image functionality. This systematic review examines the impact of artificial intelligence technology combined with genomic analysis and molecular imaging systems on present-day pathological medicine advancement. The review includes research published between 2014 and 2025, obtained from the top five databases, to demonstrate how each technology improves diagnosis separately and collaborates for precise medicine advancement. The analysis evaluated ten studies that matched all the established criteria for inclusion. Medical diagnostics benefit from combined system platforms, which also strengthen patient classification systems and treatment selection. However, these platforms require improvements in data standards and workflow connections, as well as computational resources and moral framework requirements. The study defines the necessary criteria for government-connected data platforms and interpretive artificial intelligence models, and then creates regulatory mechanisms in collaboration with interdisciplinary partnerships to develop safe and equitable healthcare applications. A single organized system triggers an essential transformation that shifts pathology from traditional morphological practices toward complex multivariate modern data methods. The research delivers strategic recommendations to enhance future practice and policy development, which will enable these technologies to be widely used in clinical settings.

Downloads

Download data is not yet available.

References

Abasher, M. M., Sidahmed, A. A., Abdelmoniem, A., & Mohamed, A. H. (2023). Breast cancer in elderly females. American Journal of Medical Science and Innovation, 2(2), 16–25. https://doi.org/10.54536/ajmsi.v2i2.1711

Ahmad, Z., Rahim, S., Zubair, M., & Abdul-Ghafar, J. (2021). Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: Present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. Diagnostic Pathology, 16, 24. https://doi.org/10.1186/s13000-021-01085-4

Ahuja, S., & Zaheer, S. (2025). Advancements in pathology: Digital transformation, precision medicine, and beyond. Journal of Pathology Informatics, 16, 100408. https://doi.org/10.1016/j.jpi.2024.100408

Ali, K., & Saqib, M. (2023). Risk prediction of thalassemia using data mining classifiers. American Journal of Medical Science and Innovation, 2(2), 97–109. https://doi.org/10.54536/ajmsi.v2i2.1979

Arvaniti, E., Berisha, V., Hagemann, V., et al. (2024). Explainable AI for computational pathology identifies model limitations and tissue biomarkers. arXiv preprint arXiv:2409.03080. https://arxiv.org/abs/2409.03080

Asif, A., Rajpoot, K., Graham, S., Snead, D., Minhas, F., & Rajpoot, N. (2023). Unleashing the potential of AI for pathology: challenges and recommendations. The Journal of Pathology, 260(5), 564–577. https://doi.org/10.1002/path.6168

Chartrand, G., Hager, G. D., & Avila, M. (2022). Explainable medical imaging AI needs human-centered design: Guidelines and evidence from a systematic review. npj Digital Medicine, 5, 156. https://doi.org/10.1038/s41746-022-00699-2

Cheng, J. Y., Abel, J. T., Balis, U. G. J., McClintock, D. S., & Pantanowitz, L. (2021). Challenges in the development, deployment, and regulation of artificial intelligence in anatomic pathology. The American Journal of Pathology, 191(10), 1684–1692. https://doi.org/10.1016/j.ajpath.2020.10.018

Fahmy, A. M. (2024). High-resolution ultrasonography versus MRI in the diagnosis of Achilles tendon lesions. American Journal of Medical Science and Innovation, 3(2), 52–58. https://doi.org/10.54536/ajmsi.v3i2.2801

He, W., Huang, W., Zhang, L., Wu, X., Zhang, S., & Zhang, B. (2024). Radiogenomics: Bridging the gap between imaging and genomics for precision oncology. MedComm, 5(9), e722. https://doi.org/10.1002/mco2.722

Ikwuka, A. O., Musa, S., Udeh, F. C., Musa, A. A., & Chukwuezie, U. C. (2023). CRISPR-Cas9 genomic editing as an innovation in the management of sickle cell disease: A systematic review. American Journal of Medical Science and Innovation, 2(2), 44–56. https://doi.org/10.54536/ajmsi.v2i2.1760

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y. L., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., Shi, A., … Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122–1131.e9. https://doi.org/10.1016/j.cell.2018.02.010

Kim, I., Kang, K., Song, Y., & Kim, T.-J. (2022). Application of artificial intelligence in pathology: Trends and challenges. Diagnostics, 12(11), 2794. https://doi.org/10.3390/diagnostics12112794

Madabhushi, A., & Lee, G. (2016). Image analysis and machine learning in digital pathology: Challenges and opportunities. Medical Image Analysis, 33, 170–175. https://doi.org/10.1016/j.media.2016.06.037

Munari, E., Scarpa, A., Cima, L., Pozzi, M., Pagni, F., Vasuri, F., Marletta, S., Dei Tos, A. P., & Eccher, A. (2024). Cutting-edge technology and automation in the pathology laboratory: Review and perspectives. Virchows Archiv, 484, 555–566. https://doi.org/10.1007/s00428-023-03655-6

Oala, L., Flach, P., & Ghalwash, M. (2022). Trust in artificial intelligence for medical diagnoses: A review. AI in Healthcare, 2, 100031. https://doi.org/10.1016/j.aihc.2022.100031

Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A., et al. (2020). AI in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837–1846. https://doi.org/10.1109/JBHI.2020.2986741

Prevedello, L. M., Halabi, S. S., Shih, G., Wu, C. C., Kohli, M. D., Chokshi, F. H., … & Flanders, A. E. (2019). Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiology: Artificial Intelligence, 1(1), e180031. https://doi.org/10.1148/ryai.20191800310

Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137–141. https://doi.org/10.1007/s11747-019-00710-5

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., … & Summers, R. M. (2020). The future of digital health with federated learning. npj Digital Medicine, 3, 119. https://doi.org/10.1038/s41746-020-00323-1

Rowe, S. (2021). Artificial intelligence in molecular imaging: At the crossroads of revolutions in medical diagnosis. Annals of Translational Medicine, 9(10), 826. https://doi.org/10.21037/atm-20-6191

Salo, I., Nordlund, L., Eklund, L., Ho, J., Soini, M., Kumar, D., Yeong, J., Guan, F., & Metsälä, E. (2024). Advancements and applications of AI technologies in pathology: A scoping review. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 12(1). https://doi.org/10.1080/21681163.2024.2396595

Saxena, S., Jena, B., Gupta, N., Das, S., Sarmah, D., Bhattacharya, P., Nath, T., Paul, S., Fouda, M. M., Kalra, M., Saba, L., Pareek, G., & Suri, J. S. (2022). Role of artificial intelligence in radiogenomics for cancers in the era of precision medicine. Cancers, 14(12), 2860. https://doi.org/10.3390/cancers14122860

Seyhan, A. A., & Carini, C. (2019). Are innovation and new technologies in precision medicine paving a new era in patient-centric care? Journal of Translational Medicine, 17, 114. https://doi.org/10.1186/s12967-019-1901-0

Shafi, S., & Parwani, A. V. (2023). Artificial intelligence in diagnostic pathology. Diagnostic Pathology, 18, 109. https://doi.org/10.1186/s13000-023-01375-z

Sussman, L., Garcia-Robledo, J. E., Ordóñez-Reyes, C., Forero, Y., Mosquera, A. F., Ruíz-Patiño, A., Chamorro, D. F., & Cardona, A. F. (2022). Integration of artificial intelligence and precision oncology in Latin America. Frontiers in Medical Technology, 4, 1007822. https://doi.org/10.3389/fmedt.2022.1007822

Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., & Wang, F. (2020). Federated learning for healthcare informatics. Journal of Healthcare Informatics Research, 5(1), 1–19. https://doi.org/10.1007/s41666-020-00082-4

Downloads

Published

2025-11-10

How to Cite

Halleluyah, A. S., Balogun, S. M., Ikeji, A. C., Shasere, B. E., & Anigala, O. (2025). Digital Revolution in Medical Pathology: Integrating Ai, Genomics, and Molecular Imaging. American Journal of Medical Science and Innovation, 4(2), 103–110. https://doi.org/10.54536/ajmsi.v4i2.5281