Utilization of Different Organic Growing Media on Growth, Yield Performance, and Palatability of Hydroponically Grown Watermelon (Citrullus Lanatus Var. Sweet 16 F1)
DOI:
https://doi.org/10.54536/ajaset.v9i2.4782Keywords:
Carbonized Rabbit Manure, Organic Growing Media, Palatability, Rabbit Manure, WatermelonAbstract
The selection of appropriate growing media is crucial in optimizing hydroponic crop production. The study investigated the effects of different organic substrates on the Growth, Yield Performance, and Palatability of hydroponically grown Watermelon (Citrullus lanatus var. Sweet 16 f1). Four (4) treatments were evaluated: T1 - Sawdust, T2 - Rabbit Manure, T3 - Carbonized Sawdust, and T4 - Carbonized Rabbit Manure. The experiment followed a Randomized Complete Block design (RCBD) and was replicated four (4) times. Growth parameters measured include the number of days from transplanting to 50% flowering, the number of days from 50% flowering to the first harvest, the number of days from transplant to first harvest, and plant vigor in 15, 30, and 45 days after transplant. At the same time, yield was assessed based on the number of fruits per plant, fruit weight in grams, fruit size, and fruit yields (t/ha). Palatability was evaluated through sensory analysis focusing on Color (flesh color), Taste (overall acceptability), Sweetness Index, and Texture (Firmness). Results revealed a significant difference among treatments, with T4 (Carbonized Rabbit Manure) producing the highest growth rate and yield. Additionally, T3 and T4 yielded fruits with superior palatability scores compared to other treatments. These findings suggest that Carbonized Rabbit Manure is a promising organic growing medium for enhancing the productivity and fruit quality of hydroponically grown watermelon.
Downloads
References
Abdel-Fattah, T. M., Ahmed, S. B., Huff, M. D., Kumar, S., Lee, J. W., & Mahmoud, M. E. (2015). Biochar from woody biomass for removing metal contaminants and carbon sequestration. Journal of Industrial and Engineering Chemistry, 22, 103–109.
Agusalim, M. (2010). Rice husk biochar for rice-based cropping system in acid soil: 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science. http://www.ccsenet.org/journal/index.php/jas
Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42(8), 1619–1640.
Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD, and grain yield. Field Crops Research, 111(1), 81–84.
Bilias, F., Kalderis, D., Richardson, C., Barbayiannis, N., & Gasparatos, D. (2023). Biochar application as soil potassium management strategy: A review. Science of The Total Environment, 858, 159782. https://doi.org/10.1016/j.scitotenv.2022.159782
Blackwell, P., Collins, M., & Riethmuller, G. (2009). Biochar application to soil. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 207–226). Earthscan.
Karakaş, C., Özçimen, D., & İnan, B. (2017). Potential use of olive stone biochar as a hydroponic growing medium. Journal of Analytical and Applied Pyrolysis, 125, 17–23. https://www.sciencedirect.com/science/article/pii/S016523701630821X
Celya, P., Gasco, A. G., Paz-Ferreiro, J., & Méndez, A. (2015). Agronomic properties of biochars from different manure wastes. Journal of Analytical and Applied Pyrolysis, 111, 173–182.
Chan, K. Y., Downie, A., Joseph, S., Meszaros, I., & Van Zwieten, L. (2007). Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629–634.
Chan, K. Y., Downie, A., Joseph, S., Meszaros, I., & Van Zwieten, L. (2008). Using poultry litter biochar as soil amendments. Australian Journal of Soil Research, 46(5), 437–444.
Coronella, C. J., Freitas, A., Hibels, S., Lin, H., Reza, T. M., & Yang, X. (2016). Hydrothermal carbonation (HTC) of cow manure: Carbon and nitrogen distribution in HTC products. AIChE Journal, 35(4), 1002–1011.
Dunlop, S. J., Arbestain, M. C., Bishop, P. A., & Wargent, J. J. (2015). Closing the loop: Use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. HortScience, 50(10), 1572–1581. https://doi.org/10.21273/HORTSCI.50.10.1572
Ernsting, A., & Smolker, R. (2009). Biochar for climate change mitigation: Fact or fiction? Biofuelwatch. http://www.biofuelwatch.org.uk/docs/biocharbriefing.pdf
Gaskin, J. W., Das, K. C., Fisher, D. S., Harris, K., Lee, R. D., Morris, L. A., & Speir, R. A. (2010). Effect of peanut hull and pine chips biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623–633.
Genesio, L., Meglieta, F., Lugato, E., Baronti, S., Pieri, R. D., & Vaccari, F. P. (2012). Surface albedo following biochar application in durum wheat. Environmental Research Letters, 7(1), 014025. https://doi.org/10.1088/1748-9326/7/1/014025
Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biology and Fertility of Soils, 35(4), 219–230.
Haris, R. F., Chesters, G., & Allen, O. N. (1966). Dynamics of soil aggregation. Advances in Agronomy, 18, 108–169.
Ishimori, T., Takahashi, Y., Sato, H., Hassan, A., Iwamoto, Y., Pandian, G. N., & Hori, H. (2017). Low-temperature carbonization of chicken manure to char and its effect on the growth of Oryza sativa L. Koshihikari and Brassica rapa komatsuna. Journal of Soils and Sediments, 17(10), 2487–2496. https://doi.org/10.1007/s11368-017-1734-6
Kelleher, B. P., Henihan, A. M., Leahy, J. J., O'Dwyer, T. F., Sutton, D., & Leahy, M. J. (2002). Advances in poultry litter disposal technology: A review. Bioresource Technology, 83(1), 27–36. https://doi.org/10.1016/S0960-8524(01)00133-0
Kolb, S. E., Fermanich, K. J., & Dornbush, M. E. (2009). Effect of charcoal quality on microbial biomass and activity in temperate soils. Soil Science Society of America Journal, 73(4), 1173–1181. https://doi.org/10.2136/sssaj2008.0232
Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 1–13). Earthscan.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota: A review. Soil Biology & Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
Lentz, R. D., & Ippolito, J. A. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41(4), 1033–1043. https://doi.org/10.2134/jeq2011.0126
Liang, B., Lehmann, J., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., Peterson, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730. https://doi.org/10.2136/sssaj2005.0383
Major, J. (2010). Guidelines on practical aspects of biochar application to field soil in various soil management systems. International Biochar Initiative. https://biochar-international.org/wp-content/uploads/2018/04/Practices-Guidelines_final.pdf
Major, J., Goodale, C., Lehmann, J., & Rondon, M. (2010a). Fate of soil-applied black carbon: Downward migration, leaching, and soil respiration. Global Change Biology, 16(6), 1366–1379. https://doi.org/10.1111/j.1365-2486.2009.02044.x
Major, J., Lehmann, J., Molina, D., Riha, S. J., & Rondon, M. (2010b). Maize yield and nutrition during four years after biochar application to a Colombian Oxisol. Plant and Soil, 333(1–2), 117–128. https://doi.org/10.1007/s11104-010-0327-0
Mehboob, W. (2011). Physiological evaluation of prime maize seed under late sown conditions (Master’s thesis, University of Agriculture, Faisalabad, Pakistan).
Nafiah, O. Z., Nugrahani, P., & Makhziah. (2023). The effect of hydroponic nutrient sources and planting media types on the growth and production of Chinese kale (Brassica oleracea L.). Jurnal Teknologi dan Pendidikan Pertanian, 12(2), 443–457. https://doi.org/10.23960/jtep-l.v12i2.443-457
Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Science, 174(2), 105–112. https://doi.org/10.1097/SS.0b013e3181981d9a
Use cow manure as fertilizer. (n.d.). Garden Guides. https://www.use-cow-manure-fertilizer-43702.htm
Watermelon. (n.d.). Encyclopaedia Britannica. https://www.britannica.com/plant/watermelon
Watermelon. (n.d.). Wikipedia. https://www.wikipedia.org/wiki/watermelon
Rondon, M. A., Hurtado, M., Lehmann, J., & Ramirez, J. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of Soils, 43(6), 699–708. https://doi.org/10.1007/s00374-006-0152-z
Rosli, N. S. M., Abdullah, R., Yaacob, J. S., & Razali, R. B. R. (2023). Effect of biochar as a hydroponic substrate on growth, color, and nutritional content of red lettuce (Lactuca sativa L.). Bragantia, 82, e20220177. https://doi.org/10.1590/1678-4499.20220177
Senjen, R. (2009). Biochar is another dangerous techno-fix. Friends of the Earth Australia. http://www.foe.au.org
Sharma, M. L., & Uehara, G. (1968). Influence of soil structure on soil water relation in low humic latosol: I. Water retention. Soil Science Society of America Proceedings, 32(5), 765–768. https://doi.org/10.2136/sssaj1968.03615995003200050037x
Shingyuji, T., & Matsumaru, T. (2007). Effect of application of carbonized cattle manure and subsequent salt removal on the growth and nutrient uptake of komatsuna (Brassica rapa L.) and nutrient leaching from the soil.
Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., DeMace, V., Blum, W., & Zech, W. (2007). Long-term effects of manure, charcoal, and mineral fertilization on crop production and fertility on highly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290. https://doi.org/10.1007/s11104-007-9193-9
Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research (CSIRO Land and Water Science Report No. 05/09). CSIRO. https://www.csiro.au/en/research/natural-environment/land/soil-carbon/biochar
Taoge, S. O., Huruichi, T., & Matsui, T. (2008a). Effect of carbonized and dried chicken manure on the growth, yield, and nitrogen content of soybean. Plant and Soil, 306(1–2), 211–220. https://doi.org/10.1007/s11104-008-9697-7
Taoge, S. O., Huruichi, T., & Matsui, T. (2008b). Effect of carbonized chicken manure supply on the growth of grain legumes. Agronomy Journal, 100(3), 1–8. https://doi.org/10.2134/agronj2007.0230
Taoge, S. O., Huruichi, T., & Matsui, T. (2008c). The effect of carbonized chicken manure, refuse-derived fuel, and potassium fertilizer application on the growth, nodulation, yield, nitrogen, and phosphorus content of soybean and cowpea in the greenhouse. Academic Journal, 3(11), 759–774. https://doi.org/10.1186/1472-6882-3-11
Taoge, S. O., Huruichi, T., & Matsui, T. (2010). Effect of carbonized chicken manure on the growth, nodulation, yield, nitrogen, and phosphorus content of four grain legumes. Plant Nutrition, 6(4), 1015–1023. https://doi.org/10.1007/s11099-010-0100-5
Topoliantz, S., Ponge, J. F., & Ballof, S. (2007). Manoic peel and charcoal: A potential organic amendment for sustainable soil fertility in the tropics. Biology and Fertility of Soils, 44(5), 579–586. https://doi.org/10.1007/s00374-007-0170-2
Touray, N., Chen, H. R., Lui, S. C., & Tsai, T. (2014). Thermochemical and pore properties of goat manure-derived biochars prepared from different pyrolysis temperatures. Journal of Environmental Management, 137, 1–8. https://doi.org/10.1016/j.jenvman.2014.02.006
Verheijen, F., Jeffery, S., Bastos, A. C., Van der Velde, M., & Diafas, I. (2010). Biochar application to soils: A critical scientific review of effects on soil properties, processes, and function. JRC Scientific and Technical Reports. https://doi.org/10.2788/11555
Villocino, Jr., S. B., & Quevedo, M. A. (2015). Effects of biochar on physicochemical and sensory quality of watermelon (Citrullus lanatus Thunb) fruit from grafted and non-grafted plants. Acta Horticulturae, 1088, 481–484. https://doi.org/10.17660/ActaHortic.2015.1088.87
Awad, Y. M., Lee, S. E., Ahmed, M. B. M., Vu, N. T., Farooq, M., Kim, I. S., Kim, H. S., Vithanage, M., Usman, A. R., Al-Wabel, M., Meers, E., Kwon, E. E., & Ok, Y. S. (2022). Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2022.131709
Yin, Y., Li, J., Zhu, S., Chen, Q., Chen, C., Rui, Y., & Shang, J. (2023). Effect of biochar application on rice, wheat, and corn seedlings in hydroponic culture. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2023.01.004



