Optimizing Agricultural Drying Technologies: A Systematic Review of Charcoal, Gas, and Hybrid Kilns for Sustainable Food Preservation

Authors

  • Oluebube E. Nwigbo Department of Mechanical Engineering, Federal University of Science and Technology, Owerri, Nigeria
  • Chukwuemeka C. Nwoko Department of Mechanical Engineering, Federal University of Science and Technology, Owerri, Nigeria
  • Somto F. Emerie Department of Mechanical Engineering, Federal University of Science and Technology, Owerri, Nigeria
  • Ifeanyichukwu U. Onyenanu Department of Mechanical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria

Keywords:

Charcoal Kilns, Drying Rate, Drying Technologies, Economic Viability, Emissions, Energy Efficiency, Gas-Fired Kilns, Sustainable Agriculture, Thermal Efficiency

Abstract

In global agriculture, post-harvest losses continue to be a major problem, especially in developing nations where insufficient drying technologies lead to significant food waste. This study systematically evaluates the performance of charcoal and gas drying kilns, focusing on efficiency, cost, and operational flexibility. Boolean search techniques were used to examine drying technologies in a thorough evaluation of peer-reviewed research using databases such as IEEE Xplore, ScienceDirect, and Scopus. The results show that, although they are inexpensive and widely available, charcoal kilns have inconsistent heat output, high emissions (1671g CO₂/kg charcoal), and deforestation risks. In contrast, gas-fired kilns exhibit superior temperature control, energy efficiency (up to 70.9% exergy efficiency), and lower emissions, but they also require a higher initial investment. A balanced solution for environments with limited resources was provided by hybrid systems that combined gas and charcoal technologies to save drying times by 50% without sacrificing product quality. The study emphasizes trade-offs: gas kilns are cleaner but more difficult to reach, whereas charcoal kilns are more expensive but environmentally unsustainable. A promising substitute that can be adjusted to the fuel supply is a hybrid system. Scaling hybrid technology, implementing regulatory incentives to encourage the use of cleaner energy, and conducting additional research on the integration of renewable energy sources are among the recommendations. This evaluation helps engineers and farmers choose the best drying options to improve sustainability and food security.

References

Abubakar, E., Mbidomti, S., Lawan, M., & Abubakar, N. (2023). Evaluating the combustion process of a methane-fired cross-draft ceramic kiln for efficiency and sustainability. Sustinere: Journal of Environment and Sustainability, 7(1), 27–38. https://doi.org/10.22515/sustinerejes.v7i1.284

Achariyaviriya, S., Achariyaviriya, A., & Chunkaew, P. (2014). Evaluation of technology transfer to rural communities for drying using LPG and solar energy cabinet dryer. https://www.thaiscience.info/Journals/Article/IJAT/10934653.pdf

Agim, M. U., Aa, A. I., Chiekyula, J. O., & Kwaghvihi, O. B. (2019). Performance Evaluation of A Developed Fish Smoking Kiln in Benue State, Nigeria.

Ajewole, P., Oluwatobi, O. B., & Oni, I. O. (2021). Development of a Dual-Powered Fish Smoking Kiln. International Journal of Research and Innovation in Applied Science, 6(2), 90-95.

Akhtar, S. S., Ervin, E., Raza, S., & Abbas, T. (2015). From coal to natural gas: Its impact on kiln production, clinker quality, and emissions. IEEE Transactions on Industry Applications, 52(2), 1913–1924. DOI: 10.1109/TIA.2015.2504554

Alakali, J. S., Adekoyeni, O. O., Alaka, I. C., Faasema, J., & Torvor, T. (2017). Fabrication and Performance Evaluation of A Hybrid Fish Smoking Kiln: Evaluation of A Hybrid Fish Smoking Kiln. Journal of Food Processing and Preservation, 41(3), e12935. https://doi.org/10.1111/jfpp.12935

Amponsah, S., Asare, H., Okyere, H., Owusu-Asante, J., Minkah, E., & Ketemepi, H. (2022). Performance Characterization of a Locally Developed Fish Smoke-Drying Kiln for Charcoal and Briquette. Journal of Agricultural Science, 14. https://doi.org/10.5539/jas.v14n11p43

Belay, B., Diriba, D., & Senbeta, F. (2024). Estimation of GHG emission from traditional kilns charcoal production in northwestern Ethiopia: Implications on climate change. Heliyon, 10(24), e41015. https://doi.org/10.1016/j.heliyon.2024.e41015

Bezyma, L. A., & Kutovoy, V. A. (2005). Vacuum drying and hybrid technologies. Stewart Post-Harvest Rev, 4, 6–13.

Bux, M., Bauer, K., Mühlbauer, W., & Conrad, T. (2001). Solar-assisted drying of timber at industrial scale. Southern African Forestry Journal, 192(1), 73–78. https://doi.org/10.1080/20702620.2001.10434136

Changrue, V., Raghavan, V. G., Orsat, V., & Vijaya Raghavan, G. (2006). Microwave drying of fruits and vegetables. Stewart Postharvest Review, 2(6), 1–7. https://doi.org/10.2212/spr.2006.6.4

Chidumayo, E. N., & Gumbo, D. J. (2013). The environmental impacts of charcoal production in tropical ecosystems of the world: A synthesis. Energy for Sustainable Development, 17(2), 86–94. https://doi.org/10.1016/j.esd.2012.07.004

Corrêia, A. F., Godoy, A. C., Feiden, A., Siqueira, J. A. C., & Soares, C. T. (2016). Evaluation of Biogas Calorific Potential for Use in Medicinal Plant Dryers. Energy in Agriculture, 31(2), 163–168. https://doi.org/10.17224/EnergAgric.2016v31n2p163-168

Daramola, J. A., Fasakin, E. A., & Famurewa, J. A. V. (2020). Fish smoking kiln using agricultural wastes as an energy source (A). The International Journal of Engineering and Science, 9(4), 29–33. DOI:10.9790/1813-0904032933

Debowski, M., Bukowski, P., Kobel, P., & Bieniek, J. (2021). Romański, L.; Knutel, B. Comparison of Energy Consumption of Cereal Grain Dryer Powered by LPG and Hard Coal in Polish Conditions. Energies 2021, 14, 4340. https://doi.org/10.3390/en14144340

Demirbas, A., Ahmad, W., Alamoudi, R., & Sheikh, M. (2016). Sustainable charcoal production from biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(13), 1882–1889. https://doi.org/10.1080/15567036.2014.1002955

Economides, M. J., & Wood, D. A. (2009). The state of natural gas. Journal of Natural Gas Science and Engineering, 1(1–2), 1–13. https://doi.org/10.1016/j.jngse.2009.03.005

Gaffney, J. S., & Marley, N. A. (2009). The impacts of combustion emissions on air quality and climate–From coal to biofuels and beyond. Atmospheric Environment, 43(1), 23–36. https://doi.org/10.1016/j.atmosenv.2008.09.016

Gold, I. L., Umweni, I. M., & Ataga, E. (2024). Design And Evaluation of a Small-Scale Processing Charcoal Kiln. Journal of Chemical Society of Nigeria, 49(3). https://doi.org/10.46602/jcsn.v49i3.982

Gomes, E., & Hossain, I. (2003). Transition from traditional brick manufacturing to more sustainable practices. Energy for Sustainable Development, 7(2), 66–76. https://doi.org/10.1016/S0973-0826(08)60356-7

Issa, W. A., Fatile, O. E., Abdulmumuni, B., Ologunye, O. B., & Okpara, I. N. (2020). Design and fabrication of a charcoal fish smoking kiln. International Journal of Recent Technology and Engineering, 9(1), 1487–1495. https://doi.org/10.35940/ijrte.A1271.059120

Issa, W., Abdulmumuni, B., & Okpara, O. (2020). Design and Fabrication of a Charcoal Fish Smoking KILN. International Journal of Recent Technology and Engineering, 9, 2277–3878. https://doi.org/10.35940/ijrte.A1271.059120

Jain, D., & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food Engineering, 78(4), 1315–1319. https://doi.org/10.1016/j.jfoodeng.2005.12.044

Janjai, S. (2012). A greenhouse-type solar dryer for small-scale dried food industries: Development and dissemination. International Journal of Energy and Environment, 3(3), 383–398.

Jimoh, M. O., & Oni, O. E. (2022). Performance evaluation of a fabricated smoking kiln. Nigerian Journal of Technology, 41(3), 476–482. https://doi.org/10.4314/njt.v41i3.7

Junping, G., Zhencheng, C., Zhenfeng, C., & Wu W. (2012). Efficient energy-saving gas tunnel kiln. Efficient energy-saving gas tunnel kiln.

Kaur, R., & Watson, J. A. (2024). A scoping review of postharvest losses, supply chain management, and technology: Implications for produce quality in developing countries. Journal of the ASABE, 67(5), 1103–1131. https://doi.org/10.13031/ja.15660

Keey, R. B. (2013). Drying: Principles and practice (Vol. 13). Elsevier.

Khaing Hnin, K., Zhang, M., Mujumdar, A. S., & Zhu, Y. (2019). Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology, 37(12), 1465–1480. https://doi.org/10.1080/07373937.2018.1510417

Kiaya, V. (2014). Post-harvest losses and strategies to reduce them. Technical Paper on Postharvest Losses, Action Contre La Faim (ACF), 25(3), 1–25.

Kshirsagar, M. P., & Kalamkar, V. R. (2014). A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renewable and Sustainable Energy Reviews, 30, 580–603. https://doi.org/10.1016/j.rser.2013.10.039

Kumar, D., & Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods, 6(1), 8. https://doi.org/10.3390/foods6010008

Mahapatra, S., Kumar, D., Singh, B., & Sachan, P. K. (2021). Biofuels and their sources of production: A review on cleaner, sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus, 4, 100036. https://doi.org/10.1016/j.nexus.2021.100036

Moka, S., Pande, M., Rani, M., Gakhar, R., Sharma, M., Rani, J., & Bhaskarwar, A. N. (2014). Alternative fuels: An overview of current trends and scope for the future. Renewable and Sustainable Energy Reviews, 32, 697–712. https://doi.org/10.1016/j.rser.2014.01.023

Montazerinejad, H., & Eicker, U. (2022). Recent development of heat and power generation using renewable fuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 165, 112578. https://doi.org/10.1016/j.rser.2022.112578

Mujumdar, A. S. (2006). Handbook of industrial drying. CRC Press. https://doi.org/10.1201/9781420017618

Napp, T. A., Gambhir, A., Hills, T. P., Florin, N., & Fennell, P. S. (2014). A review of the technologies, economics, and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable and Sustainable Energy Reviews, 30, 616–640. https://doi.org/10.1016/j.rser.2013.10.036

Nikolopoulos, N., Violidakis, I., Karampinis, E., Agraniotis, M., Bergins, C., Grammelis, P., & Kakaras, E. (2015). Report on comparison among current industrial scale lignite drying technologies (A critical review of current technologies). Fuel, 155, 86–114. https://doi.org/10.1016/j.fuel.2015.03.065

Nnabuife, S. G., Hamzat, A. K., Whidborne, J., Kuang, B., & Jenkins, K. W. (2024). Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production. International Journal of Hydrogen Energy. 107(2025), 218-240. https://doi.org/10.1016/j.ijhydene.2024.06.342

Nwakuba, N. (2016). Development of a Hybrid Fish Smoker. Futo Journal Series, 2, 34–45.

Nwakuba, N. R., Okafor, V. C., Abba, E. C., & Nwandikom, G. I. (2018). Thin-layer drying kinetics of fish in a hybrid solar-charcoal dryer. Nigeria Agricultural Journal, 49(1), 46-56.

Okpala, I. F., Onyenanu, I. U., Ezechukwu, V. C., & Ilochonwu, C. E. (2025). Performance Optimization of a Locally Developed Charcoal Briquette Machine Using Response Surface Methodology. Scientific Journal of Engineering and Technology, 2(1), 55–66. https://doi.org/10.69739/sjet.v2i1.486

Okusanya, M. A., Oluwagbayide, S. D., & Ogunlade, C. B. (2021). Impact of Improved Smoking Kiln Design on Hygiene and Timeliness of Drying of Smoked Fish. Turkish Journal of Agricultural Engineering Research, 2(1), 133–155. https://doi.org/10.46592/turkager.2021.v02i01.010

Oluleye, M. A. (2019). Design, Fabrication, and Performance Evaluation of a Charcoal-Fired Tomato Dehydrator for Developing Countries. European Journal of Engineering and Technology Research, 4(9), 195–201. https://doi.org/10.24018/ejeng.2019.4.9.1540

Onyenanu, I. U., Ogbogu, M. C., & Nwadiuto, C. J. (2024). Performance optimization of an improved biomass gasifier charcoal stove using response surface method (RSM). International Journal of Engineering Research & Technology (IJERT), 13(08). https://doi.org/10.17577/IJERTV13IS080031

Onyenanu, I. U., Okeke, O. U., Nwobu, C. B., Akubuenyi, J., Mgbemeje, A. O., & Okeke, I. C. (2023). Development of an Enhanced Biomass Gasifier Charcoal Stove. International Journal of Innovative Science and Research Technology, 8(10), 9. https://doi.org/10.5281/zenodo.10043296

Oyerinde, A. S., Olukunle, O. J., & Ogunlowo, A. S. (2012). Development of a Cross-Flow Fish Smoking Kiln Fired by Biomass Material. 2012 Dallas, Texas, July 29-August 1, 2012, 1. https://doi.org/10.13031/2013.41709

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021, 372. https://doi.org/10.1136/bmj.n71

Pankaew, P., Aumporn, O., Janjai, S., Pattarapanitchai, S., Sangsan, M., & Bala, B. K. (2020). Performance of a large-scale greenhouse solar dryer integrated with a phase change material thermal storage system for drying of chili. International Journal of Green Energy, 17(11), 632–643. https://doi.org/10.1080/15435075.2020.1779074

Riadh, M. H., Ahmad, S. A. B., Marhaban, M. H., & Soh, A. C. (2015). Infrared Heating in Food Drying: An Overview. Drying Technology, 33(3), 322–335. https://doi.org/10.1080/07373937.2014.951124

Rotowa, O. J., Egbwole, Z. T., Adeagbo, A. A., & Blessing, O. M. (2019). Effect of indiscriminate charcoal production on the Nigerian forest estate. Int. J. Environ. Protec. Policy, 7(6), 134–139. DOI: 10.11648/j.ijepp.20190706.12

Santos, D., Maurício, A. C., Sencadas, V., Santos, J. D., Fernandes, M. H., & Gomes, P. S. (2018). Spray drying: An overview. Biomaterials-Physics and Chemistry-New Edition, 2, 9–35.

Say, S. M., Erdem, T., Ekinci, K., Erdem, B. Ö., Sehri, M., & Korkut, S. S. (2022). Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption. Semina: Ciências Agrárias, 43(4), 1805–1822. https://doi.org/10.5433/1679-0359.2022v43n4p1805

Schütt, M. C. (2023a). Hybrid Kiln: Gas & Electric fired Kiln. https://www.theseus.fi/handle/10024/794436

Schütt, M. C. (2023b). Hybrid Kiln: Gas & Electric fired Kiln. https://www.theseus.fi/handle/10024/794436

Semin, R. A. B. (2008). A technical review of compressed natural gas as an alternative fuel for internal combustion engines. Am. J. Eng. Appl. Sci, 1(4), 302–311.

Shukla, S. (2011). Freeze drying process: A review. International Journal of Pharmaceutical Sciences and Research, 2(12), 3061. http://dx.doi.org/10.13040/IJPSR.0975-8232.2(12).3061-68

Singh, P., Shrivastava, V., & Kumar, A. (2018). Recent developments in greenhouse solar drying: A review. Renewable and Sustainable Energy Reviews, 82, 3250–3262. https://doi.org/10.1016/j.rser.2017.10.020

Sintali, I. S., Abioye, A. M., & Shuaibu, I. (2023). Experimental Performance Evaluation of A Charcoal-Fired Fish Smoking Kiln. Nigerian Journal of Tropical Engineering, 17(1). https://doi.org/10.59081/njte.17.1.004

Sivakumar, R., Saravanan, R., Perumal, A. E., & Iniyan, S. (2016). Fluidized bed drying of some agro products–A review. Renewable and Sustainable Energy Reviews, 61, 280–301. https://doi.org/10.1016/j.rser.2016.04.014

Sparrevik, M., Adam, C., Martinsen, V., & Cornelissen, G. (2015). Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass and Bioenergy, 72, 65–73. https://doi.org/10.1016/j.biombioe.2014.11.016

Tang, J., Feng, H., & Shen, G.-Q. (2003). Drum drying. Encyclopedia of Agricultural, Food, and Biological Engineering, 211–214. https://doi.org/10.1081/E-EAFE 120007091

Tawari, C. C., & Davies, O. (2009). Effectiveness of agricultural agencies in fisheries production and management in Niger delta, Nigeria. Ozean Journal of Applied Sciences, 2(4), 409-422.

Tazebew, E., Sato, S., Addisu, S., Bekele, E., Alemu, A., & Belay, B. (2023). Improving the traditional charcoal production system for sustainable charcoal income and environmental benefits in the highlands of Ethiopia. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e19787

Ugwu, S. N., Ugwuishiwu, B. O., Ekechukwu, O. V., Njoku, H., & Ani, A. O. (2015). Design, construction, and evaluation of a mixed-mode solar kiln with black-painted pebble bed for timber seasoning in a tropical setting. Renewable and Sustainable Energy Reviews, 41, 1404–1412. https://doi.org/10.1016/j.rser.2014.09.033

Wincy, W. B., Edwin, M., & Sekhar, S. J. (2023). Exergetic Evaluation of a Biomass Gasifier Operated Reversible Flatbed Dryer for Paddy Drying in Parboiling Process. Biomass Conversion and Biorefinery, 13(5), 4033–4045. https://doi.org/10.1007/s13399-021-01322-2

Zhou, X., & Wang, S. (2019). Recent developments in radio frequency drying of food and agricultural products: A review. Drying Technology, 37(3), 271–286. https://doi.org/10.1080/07373937.2018.1452255

Downloads

Published

2025-06-30

How to Cite

Nwigbo, O. E., Nwoko, C. C., Emerie, S. F., & Onyenanu, I. U. (2025). Optimizing Agricultural Drying Technologies: A Systematic Review of Charcoal, Gas, and Hybrid Kilns for Sustainable Food Preservation. Journal of Sustainable Engineering & Renewable Energy, 1(1), 37–51. Retrieved from https://journals.e-palli.com/home/index.php/jsere/article/view/5038