Advances in Catalysts for Biodiesel Production: A Systematic Review of Trends, Challenges, and Future Prospects

Authors

  • Okpo Samson Onoriode Department of Chemical Engineering, Southern Delta University, Ozoro, Nigeria
  • Ibeh Mark Chijioke Department of Safety, Health and Environment, University of Salford, Salford, United Kingdom

Keywords:

Biodiesel Production, Catalyst Development, Circular Biorefinery, Heterogeneous Catalysis, Process Intensification, Sustainable Biofuels

Abstract

Biodiesel has attracted worldwide interest as an alternative renewable fuel source to fossil fuels, but its industrial applications are limited to catalytic inefficiencies, high costs of production, and environmental trade-offs. This review summarizes the gains in catalyst development and process integration and aims to determine new trends, compare performance of different classes of catalysts, and provide a roadmap to sustainable adoption in industry. Scopus, Web of Science, and ScienceDirect were utilized to conduct a systematic review of peer-reviewed studies published between 2015 and 2025, covering both the historical milestones and the latest innovations. It is found that there is a strong transition between traditional homogeneous and heterogeneous heterogeneous systems and sophisticated nanocatalysts, bifunctional systems, MOFs, COFs, and biochar systems, which present varying benefits to activity, selectivity, and recyclability but remain at a disadvantage due to deactivation, feedstock effects, and bottlenecks in mass transfer. Ultrasound-assisted systems and microreactors have also facilitated intensifying reactions, whereas artificial intelligence (AI) and machine learning (ML) have made it possible to predictatively model catalyst performance, feedstock oscillations, and yield optimization. Regardless of these developments, high feedstock prices, techno-economic uncertainties, and life-cycle environmental issues still present a critical obstacle. In the future, the integration of hybrid catalysts, circular biorefinery, digital approaches, and facilitating policy frameworks will prove pivotal towards scaling the biodiesel production. Together, these avenues will make biodiesel not just a renewable transportation resource but also a key pillar of the circular bioeconomy and the global energy transition towards low-carbon.

References

Abdurakhman, Y. B., Putra, Z. A., & Bilad, M. R. (2017). Aspen HYSYS simulation for biodiesel production from waste cooking oil using membrane reactor. IOP Conference Series: Materials Science and Engineering, 180(1), Article 012273. https://doi.org/10.1088/1757-899X/180/1/012273

Abdurakhman, Y. B., Putra, Z. A., Bilad, M. R., Nordin, N. A. H. M., & Wirzal, M. D. H. (2018). Techno-economic analysis of biodiesel production process from waste cooking oil using catalytic membrane reactor and realistic feed composition. Chemical Engineering Research and Design, 134, 564-574. https://doi.org/10.1016/j.cherd.2018.04.044

Aderibigbe, F. A., Harvis, B. S., Mustapha, S. I., Mohammed, I. A., Ochapa, S. O., & Adeyemo, A. A. (2025). Synthesis of biomass-derived sulphonated heterogeneous bifunctional catalyst-Ce-OrP-SO₃H for optimization of biodiesel production from waste cooking oil. UNIOSUN Journal of Engineering and Environmental Sciences. https://doi.org/10.36108/ujees/5202.70.0150

Aderibigbe, F. A., Saka, H. B., Mustapha, S. I., Amosa, M. K., Shiru, S., Tijani, I. A., Bello, M. O., Abdulkareem, A. S., Jimoh, W. A., Odigure, J. O., & Bello, B. T. (2023). Waste cooking oil conversion to biodiesel using solid bifunctional catalysts. ChemBioEng Reviews, 10(3), 293-310. https://doi.org/10.1002/cben.202200036

Aduloju, B. (2021). Nigeria puts the brakes on ambitious biofuels refinery plan. Africa Oil and Gas Report. https://africaoilgasreport.com/2021/04/energy-transition/nigeria-puts-the-brakes-on-ambitious-biofuels-refinery-plan/

Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 12, Article 100733. https://doi.org/10.1016/j.envc.2023.100733

Akream, N. S., Hamd, M. I., Gheni, S. A., Al-Sudani, F. T., Mohammed, A. E., Mohammed, H. R., Salih, I. K., Zendehboudi, S., & Tahah, A. K. (2024). High-yield activated carbon based ZnO-Ce bifunctional catalyst for production of biodiesel from waste cooking oil. Energy Conversion and Management, 321, Article 119054. https://doi.org/10.1016/j.enconman.2024.119054

Aliyu, M., Rashid, U., Tsubota, T., Wan Ab Karim Ghani, W. A., Mohd Salleh, M. A., Khuong, D. A., Nehdi, I. A., Sbihi, H. M., & Ryu, T. (2025). A novel magnetic bifunctional hydrochar catalyst derived from palm leaf residue for biodiesel production: Kinetic and thermodynamic studies. Journal of Chemical Technology & Biotechnology, 100(3), 530-544. https://doi.org/10.1002/jctb.7792

Al-Saadi, A., Mathan, B., & He, Y. (2020). Esterification and transesterification over SrO-ZnO/Al₂O₃ as a novel bifunctional catalyst for biodiesel production. Renewable Energy, 158, 388-399. https://doi.org/10.1016/j.renene.2020.05.171

Amini, Z., Ilham, Z., Ong, H. C., Mazaheri, H., & Chen, W. H. (2017). State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management, 141, 339-353. https://doi.org/10.1016/j.enconman.2016.09.049

Anekwe, I. M. S., & Isa, Y. M. (2025). Unlocking catalytic longevity: A critical review of catalyst deactivation pathways and regeneration technologies. Energy Advances. https://doi.org/10.1039/d5ya00015g

Anil, N., Rao, P. K., Sarkar, A., Kubavat, J., Vadivel, S., Manwar, N. R., & Paul, B. (2024). Advancements in sustainable biodiesel production: A comprehensive review of bio-waste derived catalysts. Energy Conversion and Management, 318, Article 118884. https://doi.org/10.1016/j.enconman.2024.118884

Asaad, S. M., Inayat, A., Jamil, F., Ghenai, C., & Shanableh, A. (2023). Prospective of nanocatalysts in transesterification process for the biodiesel production. In 2023 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-5). IEEE. https://doi.org/10.1109/ASET56582.2023.10180499

Ashine, F., Kiflie, Z., Prabhu, S. V., Tizazu, B. Z., Varadharajan, V., Rajasimman, M., Joo, S., Vasseghian, Y., & Jayakumar, M. (2023). Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 332, Article 126166. https://doi.org/10.1016/j.fuel.2022.126166

Asif, M., Javed, F., Younas, M., Gillani, M. A., Zimmerman, W. B., & Rehman, F. (2024). Investigating biodiesel production from chicken fat oil using bi-functional catalysts and microbubble mediated mass transfer. Fuel, 358, Article 130125. https://doi.org/10.1016/j.fuel.2023.130125

Atadashi, I. M., Aroua, M. K., Aziz, A. A., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14-26. https://doi.org/10.1016/j.jiec.2012.07.009

Awogbemi, O., Ojo, A. A., & Adeleye, S. A. (2024). Advancements in the application of metal oxide nanocatalysts for sustainable biodiesel production. Discover Applied Sciences, 6(5), Article 250. https://doi.org/10.1007/s42452-024-05920-3

Bahkali, A. H., Syed, A., Elgorban, A. M., Abdel-Wahab, M. A., Srivastava, N., & Gupta, V. K. (2024). Valorization of waste date pulp and seeds in sustainable fabrication of Al₂O₃ nanocatalyst and bio-oil production. Process Safety and Environmental Protection, 184, 823-833. https://doi.org/10.1016/j.psep.2024.01.104

Betiku, E., Oraegbunam, J. C., Falowo, O. A., Ojumu, T. V., & Latinwo, L. M. (2024). Sustainable microwave-supported biodiesel production using sandbox oil and its waste shell as a nanoparticle green alkali heterogeneous catalyst. Process Biochemistry, 142, 1-12. https://doi.org/10.1016/j.procbio.2024.04.010

Bhan, S., Kumar, S., Gautam, R., Yadav, P. S., Gautam, G. D., & Mahajan, S. (2025). Innovative catalytic approaches for optimizing biodiesel production: A review of homogeneous, heterogeneous, enzymatic, and nanostructured catalysts. Environmental Progress & Sustainable Energy, Article e70052. https://doi.org/10.1002/ep.70052

Boas, R. V., de Almeida, L. D. A., & Mendes, M. F. (2022). Techno-economic evaluation of biodiesel production using by-product as raw material and hydrotalcite-hydroxyapatite as catalyst. Research, Society and Development, 11(4), e0511426977. https://doi.org/10.33448/rsd-v11i4.26977

Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839-2849. https://doi.org/10.1016/j.rser.2012.01.071

Chakraborty, R., Mukhopadhyay, P., & Kumar, B. (2016). Optimal biodiesel-additive synthesis under infrared excitation using pork bone supported-Sb catalyst: Engine performance and emission analyses. Energy Conversion and Management, 126, 32-41. https://doi.org/10.1016/j.enconman.2016.07.069

Chang, F., Zhou, Q., Pan, H., Liu, X. F., Zhang, H., Xue, W., & Yang, S. (2014). Solid mixed-metal-oxide catalysts for biodiesel production: A review. Energy Technology, 2(11), 865-873. https://doi.org/10.1002/ente.201402089

Changmai, B., Rajkumari, K., & Mochahari, N. (2023). Recent advances in biowaste-derived bifunctional catalysts in biodiesel production: A mini-review. Petroleum & Petrochemical Engineering Journal, 7(2), 1-7. https://doi.org/10.23880/ppej-16000352

Cheng, J., Xu, N. R., Khan, N. U., & Singh, H. S. M. (2025). The impacts of artificial intelligence literacy, green absorptive capacity, and green information system on green innovation. Corporate Social Responsibility and Environmental Management, 32(2), 2375-2389. https://doi.org/10.1002/csr.3017

Chhandama, M. V. L., Ruatpuia, J. V., Ao, S., Chetia, A. C., Satyan, K. B., & Rokhum, S. L. (2023). Microalgae as a sustainable feedstock for biodiesel and other production industries: Prospects and challenges. Energy Nexus, 12, Article 100255. https://doi.org/10.1016/j.nexus.2023.100255

Cong, W. J., Nanda, S., Li, H., Fang, Z., Dalai, A. K., & Kozinski, J. A. (2021). Metal-organic framework-based functional catalytic materials for biodiesel production: A review. Green Chemistry, 23(7), 2595-2618. https://doi.org/10.1039/D1GC00233C

Dai, Y. M., Li, Y. Y., Chen, B. Y., & Chen, C. C. (2021). One-pot synthesis of acid-base bifunctional catalysts for biodiesel production. Journal of Environmental Management, 299, Article 113592. https://doi.org/10.1016/j.jenvman.2021.113592

Durumin-Iya, S. G., & Ismail, U. I. (2024). Exploring the efficacy of calcined eggshell as a heterogeneous catalyst in enhancing biodiesel production through transesterification of Jatropha oil. Dutse Journal of Pure and Applied Sciences, 10(3b), 227-234. http://dx.doi.org/10.4314/dujopas.v10i3b.21

Dwivedi, G., Jain, S., Shukla, A. K., Verma, P., Verma, T. N., & Saini, G. (2022). Impact analysis of biodiesel production parameters for different catalyst. Environment, Development and Sustainability, 24, 13936-13956. https://doi.org/10.1007/s10668-021-02073-w

Elias, S., Rabiu, A. M., Okeleye, B. I., Okudoh, V., & Oyekola, O. (2020). Bifunctional heterogeneous catalyst for biodiesel production from waste vegetable oil. Applied Sciences, 10(9), Article 3153. https://doi.org/10.3390/app10093153

European Commission. (2018). Directive (EU) 2018/2001: Renewable energy directive (RED II) (recast to 2030; entered into force in 2020). https://joint-research-centre.ec.europa.eu/welcome-jec-website/reference-regulatory-framework/renewable-energy-recast-2030-red-ii_en

European Court of Auditors. (2023). Special report No. 29/2023: The EU’s support for sustainable biofuels in transport—An unclear route ahead. https://www.eca.europa.eu/ECAPublications/SR-2023-29/SR-2023-29_EN.pdf

Farouk, S. M., Tayeb, A. M., Abdel-Hamid, S. M., & Osman, R. M. (2024). Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: A comprehensive review. Environmental Science and Pollution Research, 31(9), 12722-12747. https://doi.org/10.1007/s11356-024-32027-4

Gadore, V., Mishra, S. R., Yadav, N., Yadav, G., & Ahmaruzzaman, M. (2023). Metal oxide-based heterogeneous catalysts for biodiesel production. Next Sustainability, 2, Article 100012. https://doi.org/10.1016/j.nxsust.2023.100012

Garg, R., Sabouni, R., & Ahmadipour, M. (2023). From waste to fuel: Challenging aspects in sustainable biodiesel production from lignocellulosic biomass feedstocks and role of metal organic framework as innovative heterogeneous catalysts. Industrial Crops and Products, 206, Article 117554. https://doi.org/10.1016/j.indcrop.2023.117554

Gautam, A. (2025). Optimization and control of continuous biodiesel production processes: A review. Chemical Engineering and Processing-Process Intensification, Article 110323. https://doi.org/10.1016/j.cep.2025.110323

Ghosh, N., Patra, M., & Halder, G. (2024). Current advances and future outlook of heterogeneous catalytic transesterification towards biodiesel production from waste cooking oil. Sustainable Energy & Fuels, 8(6), 1105-1152. https://doi.org/10.1039/D3SE01564E

Hazrat, M. A., Rasul, M. G., Khan, M. M., Ashwath, N., Silitonga, A. S., Fattah, I. M. R., & Mahlia, T. I. (2022). Kinetic modelling of esterification and transesterification processes for biodiesel production utilising waste-based resource. Catalysts, 12(11), Article 1472. https://doi.org/10.3390/catal12111472

Hosseinzadeh-Bandbafha, H., Nizami, A. S., Kalogirou, S. A., Gupta, V. K., Park, Y., Fallahi, A., Sulaiman, A., Ranjbari, M., Rahnama, H., Aghbashlo, M., Peng, W., & Tabatabaei, M. (2022). Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renewable and Sustainable Energy Reviews, 161, Article 112411. https://doi.org/10.1016/j.rser.2022.112411

Hu, J. R., Power, J. R., Zannad, F., & Lam, C. S. (2025). Artificial intelligence and digital tools for design and execution of cardiovascular clinical trials. European Heart Journal, 46(9), 814-826. https://doi.org/10.1093/eurheartj/ehae794

Hua, J., Ji, M., Jiao, P., Yin, Z., Xia, Q., Jiang, L., Zhang, J., & Pan, H. (2025). Heterogeneous acid catalysts for biodiesel production: Effect of physicochemical properties on their activity and reusability. Catalysts, 15(4), Article 396. https://doi.org/10.3390/catal15040396

Hwang, H. T., Qi, F., Yuan, C., Zhao, X., Ramkrishna, D., Liu, D., & Varma, A. (2014). Lipase-catalyzed process for biodiesel production: Protein engineering and lipase production. Biotechnology and Bioengineering, 111(4), 639-653. https://doi.org/10.1002/bit.25162

IFPRI. (2022). Food vs. fuel 2.0: The impacts of biofuel production on agricultural markets and food security. International Food Policy Research Institute. https://www.ifpri.org/blog/policy-seminar-food-vs-fuel-20-impacts-biofuel-production-agricultural-markets-and-food

Ilieva, Y., Zaharieva, M. M., Kroumov, A. D., & Najdenski, H. (2024). Antimicrobial and ecological potential of Chlorellaceae and Scenedesmaceae with a focus on wastewater treatment and industry. Fermentation, 10(7), Article 341. https://doi.org/10.3390/fermentation10070341

Iseghohime, E. (2023). Energy transition: Biofuels as a viable alternative to fossil fuels. Remtrack. https://www.remtrack.org/article/energy_transition:biofuels_as_a_viable_alternative_to_fossil_fuels_#:~:text=Despite%20the%20government%27s%20initiatives%2C%20Nigeria,between%20policy%20demand%20and%20actualization

Ismaeel, H. K., Albayati, T. M., Al-Sudani, F. T., Salih, I. K., Dhahad, H. A., Saady, N. M. C., Zendehboudi, S., & Fattah, I. M. R. (2024). The role of catalysts in biodiesel production as green energy applications: A review of developments and prospects. Chemical Engineering Research and Design, 204, 636-653. https://doi.org/10.1016/j.cherd.2024.02.048

Jacinta, O. N., Dominic, O. O., & Chizoo, E. (2024). Activated rice husk as a heterogeneous catalyst over optimised waste cooking oil biodiesel production. International Journal of Research, Innovation and Applied Science, 9(5), 53-64. http://dx.doi.org/10.51584/IJRIAS.2024.905005

Jan, S., Mishra, A. K., Bhat, M. A., Bhat, M. A., Qyyum, M. A., Rahman, S., & Jan, A. T. (2025). Biodiesel in circular economy: A perspective study on recent trends and environmental challenges in sustainable energy production. Renewable Energy, Article 123840. https://doi.org/10.1016/j.renene.2025.123840

Javed, F., Rizwan, M., Asif, M., Ali, S., Aslam, R., Akram, M. S., Zimmerman, W. B., & Rehman, F. (2022). Intensification of biodiesel processing from waste cooking oil, exploiting cooperative microbubble and bifunctional metallic heterogeneous catalysis. Bioengineering, 9(10), Article 533. https://doi.org/10.3390/bioengineering9100533

Jeong, S. H., Lee, H. S., Kim, D. K., Lee, J. P., Park, J. Y., Hwang, K. R., & Lee, J. S. (2017). Biodiesel production from high free fatty acid oils using a bifunctional solid catalyst. Topics in Catalysis, 60(9), 651-657. https://doi.org/10.1007/s11244-017-0772-6

Jeswani, H. K., Falano, T., & Azapagic, A. (2015). Life cycle environmental sustainability of lignocellulosic ethanol produced in integrated thermo-chemical biorefineries. Biofuels, Bioproducts and Biorefining, 9(6), 661-676. https://doi.org/10.1002/bbb.1558

Joshi, N. C., Gururani, P., Bhatnagar, P., Kumar, V., & Vlaskin, M. S. (2023). Advances in metal oxide-based nanocatalysts for biodiesel production: A review. ChemBioEng Reviews, 10(3), 258-271. https://doi.org/10.1002/cben.202200019

Khan, A. M., Alaloul, W. S., & Musarat, M. A. (2024). A critical review of digital value engineering in building design towards automated construction. Environment, Development and Sustainability, 26, 1-46. http://dx.doi.org/10.1007/s10668-024-05595-1

Kokkinos, N., Theochari, G., Emmanouilidou, E., Angelova, D., Toteva, V., Lazaridou, A., & Mitkidou, S. (2022). Biodiesel production from high free fatty acid byproduct of bioethanol production process. In IOP Conference Series: Earth and Environmental Science (Vol. 1123, No. 1, p. 012009). IOP Publishing. https://doi.org/10.1088/1755-1315/1123/1/012009

Kosuru, S. M. Y., Delhiwala, Y., Koorla, P. B., & Mekala, M. (2024). A review on the biodiesel production: Selection of catalyst, pre-treatment, post treatment methods. Green Technologies and Sustainability, 2(1), Article 100061. https://doi.org/10.1016/j.grets.2023.100061

Lakhani, P., Bhanderi, D., & Modi, C. K. (2024). Nanocatalysis: Recent progress, mechanistic insights, and diverse applications. Journal of Nanoparticle Research, 26(7), Article 148. https://doi.org/10.1007/s11051-024-06053-9

Larimi, A., Harvey, A. P., Phan, A. N., Beshtar, M., Wilson, K., & Lee, A. F. (2024). Aspects of reaction engineering for biodiesel production. Catalysts, 14(10), Article 701. https://doi.org/10.3390/catal14100701

Leuthe, D., Meyer-Hollatz, T., Plank, T., & Senkmüller, A. (2024). Towards sustainability of AI—identifying design patterns for sustainable machine learning development. Information Systems Frontiers, 26(6), 2103-2145. https://doi.org/10.1007/s10796-024-10526-6

Li, H., Fang, Z., Smith Jr, R. L., & Yang, S. (2016). Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 55, 98-194. https://doi.org/10.1016/j.pecs.2016.04.004

Li, L., Zhao, J., Yang, Y., & Ma, D. (2025). Artificial intelligence and green development well-being: Effects and mechanisms in China. Energy Economics, 141, Article 108094. https://doi.org/10.1016/j.eneco.2024.108094

Li, T., & Liang, H. (2024). Unveiling oak leaves-derived biochar/Fe₃O₄/CuO nanocatalyst for biodiesel production and declining tractor engine exhaust emissions. Industrial Crops and Products, 222, Article 119979. https://doi.org/10.1016/j.indcrop.2024.119979

Liu, A., Xuan, W., & Xiao, Y. (2025). State-of-the-art review on applications of various machine learning models in biodiesel production. Chemometrics and Intelligent Laboratory Systems, Article 105391. https://doi.org/10.1016/j.chemolab.2025.105391

Maleki, B., Esmaeili, H., & Venkatesh, Y. K. (2024). Valorization of dairy waste scum oil and rice husk ash-supported CuO nanocatalyst towards cleaner production of biodiesel: A waste-to-energy approach. Process Safety and Environmental Protection, 192, 1393-1407. https://doi.org/10.1016/j.psep.2024.10.124

Maroa, S., & Inambao, F. (2021). A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Engineering in Life Sciences, 21(12), 790-824. https://doi.org/10.1002/elsc.202100006

Mata, A., Zhang, J., Pridemore, J., Johnson, K., Holliday, N., Helmstetter, A., & Lu, M. (2024). A review of grease trap waste management in the US and the upcycle as feedstocks for alternative diesel fuels. Environments, 11(8), Article 159. https://doi.org/10.3390/environments11080159

Mohebolkhames, E., Kazemeini, M., & Sadjadi, S. (2024). Utilization of salmon fish bone wastes as a novel bio-based heterogeneous catalyst-support toward the production of biodiesel: Process optimizations and kinetics studies. Materials Chemistry and Physics, 311, Article 128522. https://doi.org/10.1016/j.matchemphys.2023.128522

Motevali, A., Hooshmandzadeh, N., Fayyazi, E., Valipour, M., & Yue, J. (2023). Environmental impacts of biodiesel production cycle from farm to manufactory: An application of sustainable systems engineering. Atmosphere, 14(2), Article 399. https://doi.org/10.3390/atmos14020399

Mukhtar, A., Saqib, S., Lin, H., Hassan Shah, M. U., Ullah, S., Younas, M., Rezakazemi, M., Ibrahim, M., Mahmood, A., Asif, S., & Bokhari, A. (2022). Current status and challenges in the heterogeneous catalysis for biodiesel production. Renewable and Sustainable Energy Reviews, 157, Article 112012. https://doi.org/10.1016/j.rser.2021.112012

Munyentwali, A., Li, H., & Yang, Q. (2022). Review of advances in bifunctional solid acid/base catalysts for sustainable biodiesel production. Applied Catalysis A: General, 633, Article 118525. https://doi.org/10.1016/j.apcata.2022.118525

Nassar, H. N., Ismail, A. R., & El-Gendy, N. S. (2021). Biodiesel sustainability: Challenges and perspectives. In Sustainable solutions for environmental pollution: Waste management and value-added products (Vol. 1, pp. 41-122). Wiley. https://doi.org/10.1002/9781119785439.ch2

Nawin, L., Manash Kumar, Darshan, & Chandrakant Thakur. (2024). Application of catalysts used in biodiesel production—A review. Journal of Environmental Nanotechnology, 13(3), 145-151. https://doi.org/10.13074/jent.2024.09.242716

Niyogi, K., Micale, D., Cafaro, D., Bracconi, M., & Maestri, M. (2023). Fluid dynamics aspects and reactor scale simulations of chemical reactors for turquoise hydrogen production. In Advances in Chemical Engineering (Vol. 61, pp. 63-132). Academic Press. https://doi.org/10.1016/bs.ache.2023.06.002

Nogales-Delgado, S. (2025). Biodiesel production and life cycle assessment: Status and prospects. Energies, 18(13), Article 3338. https://doi.org/10.3390/en18133338

Novita, L., de Freitas, F. A., Fauzia, S., & Zein, R. (2024). Enhanced conversion of used palm cooking oil to biodiesel by a green and recyclable palm kernel shell ash-derived catalyst: Process optimization by response surface methodology. Case Studies in Chemical and Environmental Engineering, 9, Article 100678. https://doi.org/10.1016/j.cscee.2024.100678

Nyorere, O., Oluka, S. I., Onoji, S. E., Nwadiolu, R., & Adepoju, T. F. (2024). Production of biodiesel from biocatalysis of agro-wastes in acidic environment. Scientific African, 24, Article e02154. https://doi.org/10.1016/j.sciaf.2024.e02154

Ogundele, O. D. (2025). Next-generation catalysts for sustainable biodiesel production: A comprehensive review. Romanian Journal of Ecology & Environmental Chemistry, 7, 1. https://doi.org/10.21698/rjeec.2025.102

Okirie, A. J., Frank, L. E., & Ozuru, O. N. (2025). Leveraging Industry 5.0 technologies for building resilience and sustainability in the oil and gas industry. American Journal of IR 4.0 and Beyond, 4(1), 17–28. https://doi.org/10.54536/ajirb.v4i1.3718

Omokaro, G. O., & Nafula, Z. S. (2023). Microalgae: Harnessing environmental and nature benefits – A comprehensive review. American Journal of Agricultural Science, Engineering, and Technology, 7(3), 47–56. https://doi.org/10.54536/ajaset.v7i3.2232

Omolade, O. A., Orji, F. A., Agu, G. C., & Adebajo, L. O. (2022). Characterisation studies on lipases of Brevibacterium, Bacillus and Pseudomonas spp. produced under submerged fermentation of different carbon sources. American Journal of Life Science and Innovation, 1(2), 1–8. https://doi.org/10.54536/ajlsi.v1i2.303

Oni-Adimabua, O. N., Ifeanyi-Nze, F. O., Abimbolu, A. K., Opadokun, E. O., Omolusi, A. R., Ezeokolie, E. D., Akintunde, S. O., Okwuenu, E. O., & Ankomah, N. O. (2024). Production, optimization, and characterization of biodiesel from almond seed oil using a bifunctional catalyst derived from waste animal bones and almond shell. European Journal of Sustainable Development Research, 8(3). https://doi.org/10.29333/ejosdr/14740

Ou, C., Chen, X., Hu, K., Cao, Y., & Shao, Y. (2024). Factors influencing the digital intelligence transformation of offshore wind power enterprise. Ocean & Coastal Management, 259, Article 107463. https://doi.org/10.1016/j.ocecoaman.2024.107463

Pandit, C., Banerjee, S., Pandit, S., Lahiri, D., Kumar, V., Chaubey, K. K., Al-Balushi, R., Al-Bahry, S., & Joshi, S. J. (2023). Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon, 9(4), Article e15475. https://doi.org/10.1016/j.heliyon.2023.e15475

Parakh, S. K., Tian, Z., Wong, J. Z. E., & Tong, Y. W. (2023). From microalgae to bioenergy: Recent advances in biochemical conversion processes. Fermentation, 9(6), Article 529. https://doi.org/10.3390/fermentation9060529

Patel, K., & Singh, S. K. (2024). Sustainable biodiesel from used cooking oil: A comparative life cycle, energy, and uncertainty analysis. Environment, Development and Sustainability, 26, 1-26. https://doi.org/10.1007/s10668-024-05692-1

Patle, D. S., Pandey, A., Srivastava, S., Sawarkar, A. N., & Kumar, S. (2021). Ultrasound-intensified biodiesel production from algal biomass: A review. Environmental Chemistry Letters, 19(1), 209-229. https://doi.org/10.1007/s10311-020-01080-z

Rajaeifar, M. A., Tabatabaei, M., Aghbashlo, M., Hemayati, S. S., & Heijungs, R. (2018). Biodiesel production and consumption: Life cycle assessment (LCA) approach. In M. Tabatabaei & M. Aghbashlo (Eds.), Biodiesel: From production to combustion (pp. 161-192). Springer International Publishing. https://doi.org/10.1007/978-3-030-00985-4_8

Rajak, A. K., Dalal, S., Harikrishna, M., Sahoo, U. K., Karuna, M. S., & Sarangi, P. K. (2025). A comprehensive review of biomass-derived heterogeneous catalysts for efficient biodiesel production. Asian Journal of Water, Environment and Pollution, Article 025130095. https://doi.org/10.36922/AJWEP025130095

Rajak, A. K., Harikrishna, M., Mahato, D. L., Anandamma, U., Pothu, R., Sarangi, P. K., Sahoo, U. K., Vennu, V., Boddula, R., & Karuna, M. S. (2024). Valorising orange and banana peels: Green catalysts for transesterification and biodiesel production in a circular bioeconomy. Journal of the Taiwan Institute of Chemical Engineers, Article 105804. https://doi.org/10.1016/j.jtice.2024.105804

Ramasamy, S. V. M., Booramurthy, V., Pandian, S., Albaqami, M. D., & Alotabi, R. G. (2023). Synthesis and characterization of magnetic bifunctional nano-catalyst for the production of biodiesel from Madhuca indica oil. Environmental Science and Pollution Research, 30(25), 66912-66922. https://doi.org/10.1007/s11356-023-26992-5

Ramos, M., Dias, A. P. S., Puna, J. F., Gomes, J., & Bordado, J. C. (2019). Biodiesel production processes and sustainable raw materials. Energies, 12(23), Article 4408. https://doi.org/10.3390/en12234408

Rashid, J., Arif, A., Muhammad, P., Xu, M., & Kumar, R. (2025). Recent advances in nanocatalysis for clean energy and carbon neutral applications. Fuel, 394, Article 134924. https://doi.org/10.1016/j.fuel.2025.134924

Rathod, D. R., Karkal, S. S., Jamadar, A. S., Hashem, A. M. A., Suresh, P. V., Mamatha, S. S., & Kudre, T. G. (2023). Prospects of novel heterogeneous base catalysts and nanocatalysts in achieving sustainable biodiesel production. International Journal of Green Energy, 21(5), 1017-1042. https://doi.org/10.1080/15435075.2023.2228886

Rehman, A., Noor, T., Hussain, A., Iqbal, N., & Jahan, Z. (2021). Role of catalysis in biofuels production process—A review. ChemBioEng Reviews, 8(5), 417-438. https://doi.org/10.1002/cben.202000040

Rescsanski, S., Hebert, R., Haghighi, A., Tang, J., & Imani, F. (2025). Towards intelligent cooperative robotics in additive manufacturing: Past, present, and future. Robotics and Computer-Integrated Manufacturing, 93, Article 102925. https://doi.org/10.1016/j.rcim.2024.102925

Rezki, B., Essamlali, Y., Amadine, O., Sair, S., Aadil, M., Len, C., & Zahouily, M. (2024). A comprehensive review on apatite-derived catalysts for sustainable biodiesel production: Classification, features and challenges. Journal of Environmental Chemical Engineering, 12(1), Article 111913. https://doi.org/10.1016/j.jece.2024.111913

Ribeiro, T. S., de Araújo Sobrinho, I., Gonçalves, M. A., da Silva Lima, V., Figueira, B. A. M., da Rocha Filho, G. N., & da Conceição, L. R. V. (2024). Green synthesis of biodiesel from magnetic basic biochar derived from Amazonian murici residual biomass: Optimization, kinetic, thermodynamic, and environmental studies. Journal of Environmental Chemical Engineering, 12(6), Article 114725. https://doi.org/10.1016/j.jece.2024.114725

Rocha-Meneses, L., Hari, A., Inayat, A., Yousef, L. A., Alarab, S., Abdallah, M., Shanableh, A., Ghenai, C., Shanmugam, S., & Kikas, T. (2023). Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production. Fuel, 348, Article 128514. https://doi.org/10.1016/j.fuel.2023.128514

Selvakumar, P., Arunagiri, A., & Sivashanmugam, P. (2019). Thermo-sonic assisted enzymatic pre-treatment of sludge biomass as potential feedstock for oleaginous yeast cultivation to produce biodiesel. Renewable Energy, 139, 1400-1411. https://doi.org/10.1016/j.renene.2019.03.040

Semwal, S., Arora, A. K., Badoni, R. P., & Tuli, D. K. (2011). Biodiesel production using heterogeneous catalysts. Bioresource Technology, 102(3), 2151-2161. https://doi.org/10.1016/j.biortech.2010.10.080

Singh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., & Jhalani, A. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. Journal of Cleaner Production, 307, Article 127299. https://doi.org/10.1016/j.jclepro.2021.127299

Sousa, V., Pereira, R. N., Vicente, A. A., Dias, O., & Geada, P. (2023). Microalgae biomass as an alternative source of biocompounds: New insights and future perspectives of extraction methodologies. Food Research International, 173, Article 113282. https://doi.org/10.1016/j.foodres.2023.113282

Sreelekha, Dubey, N., & Avinashe, H. (2024). Utilizing waste cooking oil for sustainable biodiesel production: A comprehensive review. Journal of Scientific Research and Reports, 30(6), 222-234. https://doi.org/10.9734/jsrr/2024/v30i62036

Srikumar, K., Tan, Y. H., Kansedo, J., Tan, I. S., Mubarak, N. M., Ibrahim, M. L., Yek, P. N., Foo, H. C., Karri, R. R., & Khalid, M. (2024). A review on the environmental life cycle assessment of biodiesel production: Selection of catalyst and oil feedstock. Biomass and Bioenergy, 185, Article 107239. https://doi.org/10.1016/j.biombioe.2024.107239

Sulaiman, N. F., Gunasekaran, S. S., Nashruddin, S. N. A. M., Nashruddin, S. N. A. M., Sofiah, A. G. N., Abd Mubin, M. H., & Lee, S. L. (2025a). Advancements in transesterification of waste cooking oil to biodiesel using rare earth metal oxide catalysts: A bibliometric analysis and future prospects. Fuel, 394, Article 135158. https://doi.org/10.1016/j.fuel.2025.135158

Sulaiman, N. F., Gunasekaran, S. S., Zaman, H. B., Nashruddin, S. N., Nashruddin, S. N., Sofiah, A. G., Mubin, M. H., & Lee, S. L. (2025b). Advances in catalysis for biodiesel production: Integrating AI-driven optimization and bibliometric insights into renewable energy technologies. Bioresource Technology, 437, Article 133088. https://doi.org/10.1016/j.biortech.2025.133088

Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, A., Hosseini, M., & Soufiyan, M. M. (2019). Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 239-303. https://doi.org/10.1016/j.pecs.2019.06.001

Takase, M., Bryant, I. M., Essandoh, P. K., & Amankwa, A. E. K. (2023). A comparative study on performance of KOH and 32% KOH/ZrO₂-7 catalysts for biodiesel via transesterification of waste Adansonia digitata oil. Green Technologies and Sustainability, 1(1), Article 100004. https://doi.org/10.1016/j.grets.2022.100004

Tamoradi, T., Kiasat, A. R., Veisi, H., Nobakht, V., & Karmakar, B. (2022). RSM process optimization of biodiesel production from rapeseed oil and waste corn oil in the presence of green and novel catalyst. Scientific Reports, 12(1), Article 19652. https://doi.org/10.1038/s41598-022-20538-4

Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: A review. Biotechnology Advances, 28(5), 628-634. https://doi.org/10.1016/j.biotechadv.2010.05.012

Tan, Z., Chen, G., Chen, S., Zhang, J., Liu, J., Ma, X., Liao, H., Hu, Z., Ge, F., Ju, F., Shi, H., & Bilal, M. (2023). Engineering lipase at the molecular scale for cleaner biodiesel production—A review. Molecular Catalysis, 546, Article 113271. https://doi.org/10.1016/j.mcat.2023.113271

Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S., & Lin, L. (2019). Catalysis in biodiesel production—A review. Clean Energy, 3(1), 2-23. https://doi.org/10.1093/ce/zky020

Thiruketheeswaranathan, S. (2022). Application of life cycle assessment tool on biodiesel production: Assessing the environmental impact of biodiesel. Middle East Journal of Applied Science & Technology, 5(1), 1-6. https://ssrn.com/abstract=4080225

Tomar, S., Agarwal, S., Singh, H., Kumar, R., Qureshi, K. A., Jaremko, M., Emwas, A. H., Lech, W., & Rai, P. K. (2023). Microalgae: A promising source for biofuel production. Biocatalysis and Agricultural Biotechnology, 53, Article 102877. https://doi.org/10.1016/j.bcab.2023.102877

Tsai, C. H., & Tsai, W. T. (2024). Sustainable processes reusing potassium-rich biomass ash as a green catalyst for biodiesel production: A mini-review. Processes, 12(12), Article 2736. https://doi.org/10.3390/pr12122736

Ulukardesler, A. H. (2023). Biodiesel production from waste cooking oil using different types of catalysts. Processes, 11(7), Article 2035. https://doi.org/10.3390/pr11072035

Wang, B., Wang, B., Shukla, S. K., & Wang, R. (2023). Enabling catalysts for biodiesel production via transesterification. Catalysts, 13(4), Article 740. https://doi.org/10.3390/catal13040740

Wang, N., Chen, X., Zhang, Y., Pang, J., Long, Z., Chen, Y., & Zhang, Z. (2024). Integrated effects of land use and land cover change on carbon metabolism: Based on ecological network analysis. Environmental Impact Assessment Review, 104, Article 107320. https://doi.org/10.1016/j.eiar.2023.107320

Wang, Y., Gong, C., Ji, X., & Yuan, Q. (2025). Text classification for evaluating digital technology adoption maturity based on BERT: An evidence of industrial AI from China. Technological Forecasting and Social Change, 211, Article 123903. https://doi.org/10.1016/j.techfore.2024.123903

Yadav, G., Yadav, N., & Ahmaruzzaman, M. (2023). Microwave-assisted sustainable synthesis of biodiesel on Oryza sativa catalyst derived from agricultural waste by esterification reaction. Chemical Engineering and Processing-Process Intensification, 187, Article 109327. https://doi.org/10.1016/j.cep.2023.109327

Yaghi, M., Chidiac, S., Awad, S., El Rayess, Y., & Zgheib, N. (2025). An overview of biodiesel production via heterogeneous catalysts: Synthesis, current advances, and challenges. Clean Technologies, 7(3), Article 62. https://doi.org/10.3390/cleantechnol7030062

Yahya, I., Gassoumi, M., Attia, M., & Ennetta, R. (2025). Application of AI and machine learning techniques to improve microwave-assisted biodiesel yield prediction. Biomass and Bioenergy, 202, Article 108250. https://doi.org/10.1016/j.biombioe.2025.108250

Yusuf, B. O., Oladepo, S. A., & Ganiyu, S. A. (2024). Efficient and sustainable biodiesel production via transesterification: Catalysts and operating conditions. Catalysts, 14(9), Article 581. https://doi.org/10.3390/catal14090581

Zambrano-Monserrate, M. A., & Ormeño-Candelario, V. (2024). Disaggregated impact of natural resources rents on the ecological footprint: New evidence from more polluting countries. Mineral Economics, 37(4), 759-770. https://doi.org/10.1007/s13563-023-00407-w

Zhang, H., Li, H., Hu, Y., Rao, K. T. V., Xu, C. C., & Yang, S. (2019b). Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renewable and Sustainable Energy Reviews, 114, Article 109296. https://doi.org/10.1016/j.rser.2019.109296

Zhang, H., Xu, C., Zhou, K., & Yang, S. (2019a). Chemo-catalytic esterification and transesterification over organic polymer-based catalysts for biodiesel synthesis. Current Organic Chemistry, 23(20), 2190-2203. http://dx.doi.org/10.2174/1385272823666190715124659

Zhang, J., Gao, H., Liu, Y., & Wang, J. (2025). A review on the application of superalloys composition, microstructure, processing, and performance via machine learning: Zhang, Gao, Liu, and Wang. JOM, 77(1), 106-124. https://doi.org/10.1007/s11837-024-06922-7

Zhao, T., Huang, X., Cui, R., Han, W., Zhang, G., & Tang, Z. (2023). Design of confined catalysts and applications in environmental catalysis: Original perspectives and further prospects. Journal of Cleaner Production, 390, Article 136125. https://doi.org/10.1016/j.jclepro.2023.136125

Zhong, S., Su, L., Xu, M., Loke, D., Yu, B., Zhang, Y., & Zhao, R. (2025). Recent advances in artificial sensory neurons: Biological fundamentals, devices, applications, and challenges. Nano-Micro Letters, 17(1), Article 61. https://doi.org/10.1007/s40820-024-01550-x

Zhou, J., Zhao, J., Zhang, J., Zhang, T., Ye, M., & Liu, Z. (2020). Regeneration of catalysts deactivated by coke deposition: A review. Chinese Journal of Catalysis, 41(7), 1048-1061. https://doi.org/10.1016/S1872-2067(20)63552-5

Zhu, J., Lin, T., Niu, S., Zhang, Y., Han, K., Wang, Y., Yu, H., Liu, J., Zheng, Y., Liu, S., Geng, J., Yang, Z., Liang, B., Zhang, H., & Sun, X. (2024). Synthesis of HNTs-Ca/Zn catalyst for biodiesel production from acidulated palm oil: Optimized by GA-BP. Industrial Crops and Products, 213, Article 118450. https://doi.org/10.1016/j.indcrop.2024.118450

Downloads

Published

2025-11-03

How to Cite

Okpo , S. O., & Ibeh, M. C. (2025). Advances in Catalysts for Biodiesel Production: A Systematic Review of Trends, Challenges, and Future Prospects. Journal of Sustainable Engineering & Renewable Energy, 1(2), 1–15. Retrieved from https://journals.e-palli.com/home/index.php/jsere/article/view/5930