The Role of Intake Manifold Geometry on Airflow Dynamics and Combustion Efficiency: A Computational and Experimental Review
Keywords:
Airflow Dynamics, Computational Fluid Dynamics (CFD), Emission Reduction, Engine Performance, Helmholtz Resonance, Intake Manifold Geometry, Internal Combustion Engine (ICE), Volumetric EfficiencyAbstract
The geometric configuration of the intake manifold assumes a crucial function in influencing the aerodynamic behavior and combustion efficacy of internal combustion engines (ICEs). This comprehensive review amalgamates both computational and experimental investigations to assess the influence of manifold design parameters on engine performance metrics, volumetric efficiency, and emission profiles. A systematic literature review was executed utilizing the Scopus database, employing Boolean search operators to identify 18 significant studies published between 2008 and 2025. The methodologies encompassed computational fluid dynamics (CFD) simulations, empirical validations, and performance indicators such as torque, fuel consumption, and pollutant emissions. The principal findings indicate that variable-length manifolds can enhance volumetric efficiency by 8–15% by tuning Helmholtz resonance, albeit at the expense of increased cost and complexity. Fixed-geometry configurations yield 5–7% torque improvements at resonant frequencies, yet they exhibit suboptimal performance beyond their specified operational ranges. This study accentuates the necessity for application-specific designs that harmonize performance, cost, and emissions. Future investigations should delve into adaptive geometries that utilize additive manufacturing techniques and enhance transient-state modeling to overcome existing challenges. This review establishes a framework for engineers to refine intake manifold designs, highlighting the intricate relationship between geometry, fluid dynamics, and combustion efficiency.
References
Adithya, K., Ahmed, F., Padmanathan, P., Mohan, C. G., & Prakash, R. (2021). Design optimization of the intake manifold of dual dual-fuel engine. Materials Today: Proceedings, 45, 646–651. https://doi.org/10.1016/j.matpr.2020.02.726
Alagumalai, A. (2014). Internal combustion engines: Progress and prospects. Renewable and Sustainable Energy Reviews, 38, 561–571. https://doi.org/10.1016/j.rser.2014.06.014
Anaclerio, F., Viggiano, A., Fornarelli, F., Caso, P., Sparaco, D., & Magi, V. (2024). The Influence of the Intake Geometry on the Performance of a Four-Stroke SI Engine for Aeronautical Applications. Energies, 17(21), Article 21. https://doi.org/10.3390/en17215309
Bayas Jagadishsingh, G., & Jadhav, N. P. (2016). Effect of variable length intake manifold on the performance of the IC engine. International Journal of Current Engineering and Technology, 5, 47–52. Available at http://inpressco.com/category/ijcet
Farag, M., Kosaka, H., Bady, M., & Abdel-Rahman, A. K. (2017). Effects of intake and exhaust manifold water injection on combustion and emission characteristics of a DI diesel engine. Journal of Thermal Science and Technology, 12(1), JTST0014–JTST0014. https://doi.org/10.1299/jtst.2017jtst0014
Ghil, M., & Childress, S. (2012). Topics in geophysical fluid dynamics: Atmospheric dynamics, dynamo theory, and climate dynamics (Vol. 60). Springer Science & Business Media.
Heywood, J. (2018). Internal combustion engine fundamentals. https://thuvienso.tnut.edu.vn/handle/123456789/1198
Jemni, M. A., HadjKacem, S., Ammar, M., Saaidia, R., Brayek, M., & Abid, M. S. (2021). Variable intake manifold geometry influence on volumetric efficiency enhancement at gaseous engine starting speeds. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2), 548–559. https://doi.org/10.1177/0954408920973129
Jemni, M. A., Kantchev, G., & Abid, M. S. (2011). Influence of intake manifold design on in-cylinder flow and engine performance in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations. Energy, 36(5), 2701–2715. https://doi.org/10.1016/j.energy.2011.02.011
Kaplan, C., & Aydoğan, H. (2020). Investigation of Intake Manifold Design and Its Effect on Engine Performance. Renewable Energy Sources Energy Policy and Energy Management, 1(2), 29–34. Available at https://dergipark.org.tr/en/pub/resepem
Khajezade Roodi, M., Jalali, A., Hedayati, A., & Amiri Delouei, A. (2023). Optimization of Spark Ignition Engine Performance using a New Double Intake Manifold: Experimental and Numerical Analysis. Journal of Applied and Computational Mechanics, 9(1), 1–14. https://doi.org/10.22055/jacm.2020.34234.2365
Kim, T., Shin, Y., Park, J., & Cho, H. (2021a). Evaluation of the Performance of an Automobile Engine Using an Air Injection Nozzle in the Intake Manifold. Energies, 14(24), 8555. https://doi.org/10.3390/en14248555
Ma, Y., & Fu, Y. (2012). Manifold learning theory and applications (Vol. 434). CRC press Boca Raton.
Malkhede, D. N., & Khalane, H. (2015). Maximizing Volumetric Efficiency of IC Engine through Intake Manifold Tuning (SAE Technical Paper Nos. 2015-01–1738). SAE International. https://doi.org/10.4271/2015-01-1738
Manmadhachary, A., Santosh Kumar, M., & Ravi Kumar, Y. (2017). Design and manufacturing of spiral intake manifold to improve volumetric efficiency of the injection diesel engine by AM process. Materials Today: Proceedings, 4(2, Part A), 1084–1090. https://doi.org/10.1016/j.matpr.2017.01.123
Onorati, A., Payri, R., Vaglieco, B., Agarwal, A., Bae, C., Bruneaux, G., Canakci, M., Gavaises, M., Günthner, M., Hasse, C., Kokjohn, S., Kong, S.-C., Moriyoshi, Y., Novella, R., Pesyridis, A., Reitz, R., Ryan, T., Wagner, R., & Zhao, H. (2022). The role of hydrogen for future internal combustion engines. International Journal of Engine Research, 23(4), 529–540. https://doi.org/10.1177/14680874221081947
Osobajo, O. A., & Moore, D. (2017). Methodological choices in relationship quality (RQ) research 1987 to 2015: a systematic literature review. Journal of Relationship Marketing, 16(1), 40-81. https://doi.org10.1080/15332667.2016.1242395.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021, 372. https://doi.org/10.1136/bmj.n71
Payri, F., Benajes, J., Margot, X., & Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines. Computers & Fluids, 33(8), 995–1021. https://doi.org/10.1016/j.compfluid.2003.09.003
Porter, M. (2009). Intake manifold design using computational fluid dynamics. The UNSW Canberra at ADFA Journal of Undergraduate Engineering Research, 1(2), 31.
Priyadarsini, I. (2016). Flow analysis of intake manifold using computational fluid dynamics. International Journal of Engineering and Advanced Research Technology, 2(1), 1–5.
Raja, K., Selvam, A. J., & Rupesh, P. L. (2020a). Experimental Investigation on the Emission Level of a Single Cylinder Petrol Engine with Manifolds of Different Geometry. In L.-J. Yang, A. N. Haq, & L. Nagarajan (Eds.), Proceedings of ICDMC 2019 (pp. 83–89). Springer. https://doi.org/10.1007/978-981-15-3631-1_9
Raja, K., Selvam, A. J., & Rupesh, P. L. (2020b). Experimental Investigation on the Emission Level of a Single Cylinder Petrol Engine with Manifolds of Different Geometry. In L.-J. Yang, A. N. Haq, & L. Nagarajan (Eds.), Proceedings of ICDMC 2019 (pp. 83–89). Springer Singapore. https://doi.org/10.1007/978-981-15-3631-1_9
Saaıdıa, R., Ghrıss, O., Köten, H., Alquraısh, M. M., Bouabıdı, A., & Assad, M. E. H. (2024). Effects of intake manifold geometry in H2 & CNG fueled engine combustion. Journal of Thermal Engineering, 10(1), 153–163. https://doi.org/10.18186/thermal.1429746
Samuel, J., Prasad, N. S., & Annamalai, K. (2013). Effect of variable length intake manifold on a turbocharged multi-cylinder diesel engine. SAE Technical Paper. https://www.sae.org/publications/technical-papers/content/2013-01-2756/ https://doi.org/10.4271/2013-01-2756.
Silva, E. A. A., Ochoa, A. A. V., & Henríquez, J. R. (2019a). Analysis and runners length optimization of the intake manifold of a 4-cylinder spark ignition engine. Energy Conversion and Management, 188, 310–320. https://doi.org/10.1016/j.enconman.2019.03.065
Silva, E. A. A., Ochoa, A. A. V., & Henríquez, J. R. (2019b). Analysis and runners length optimization of the intake manifold of a 4-cylinder spark ignition engine. Energy Conversion and Management, 188, 310–320. https://doi.org/10.1016/j.enconman.2019.03.065
Thombare, D. G., Ghare, V. V., & Dunung, S. A. (2021). Computational Analysis of Intake Manifold Design Variants on Induction Swirl of Single-Cylinder Diesel Engine. In A. K. Gupta, H. C. Mongia, P. Chandna, & G. Sachdeva (Eds.), Advances in IC Engines and Combustion Technology (pp. 895–913). Springer. https://doi.org/10.1007/978-981-15-5996-9_69
Tu, J., Yeoh, G. H., Liu, C., & Tao, Y. (2023). Computational fluid dynamics: A practical approach. Elsevier.
Van Basshuysen, R., & Schäfer, F. (2016). Internal combustion engine handbook. SAE International.
Wang, F. Z., Animasaun, I. L., Muhammad, T., & Okoya, S. S. (2024). Recent Advancements in Fluid Dynamics: Drag Reduction, Lift Generation, Computational Fluid Dynamics, Turbulence Modelling, and Multiphase Flow. Arabian Journal for Science and Engineering, 49(8), 10237–10249. https://doi.org/10.1007/s13369-024-08945-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Swift N. K. Onyegirim, Ifeanyichukwu U. Onyenanu, Arinzechukwu H. Madukasi, Oluebube E. Nwigbo

This work is licensed under a Creative Commons Attribution 4.0 International License.