Alzheimer’s Disease Detection Using Lightweight Convolutional Neural Network on MRI Scans

Authors

  • Venant Niyonkuru Department of Computing and Information System, Kenyatta University, Kenya
  • Sekou Sylla Institute for Basic Science, Technology and Innovation, Pan-African University, Kenya
  • Zindazed Abdshahd Kasuli Makerere University, Uganda
  • Jimmy Jackson Sinzinkayo College of Software, Nankai University, China
  • Deo Kabanga Kenyatta University, Kenya

DOI:

https://doi.org/10.54536/ajbb.v4i1.5943

Keywords:

Deep Learning, Detection, Disease Classification, Early Detection, Kaggle Dataset, Medical Images Analysis

Abstract

This research suggests a lightweight Convolutional Neural Network (CNN) model for Alzheimer’s Disease (AD) detection and classification from Magnetic Resonance Imaging (MRI) scans. Two models were trained: a binary model distinguishing AD from non-AD cases and a multi-class model distinguishing four stages of dementia (Non-Demented, Very Mild-Demented, Mild Demented, and Moderate Demented). The models were trained on a Kaggle dataset with high accuracy (97.5% binary, 89.3% multi-class). The research demonstrates the viability of lightweight CNNs for low-cost and precise AD diagnosis, with class imbalance managed through data augmentation.

Downloads

Download data is not yet available.

References

Ahmed, G., Er, M. J., Fareed, M. M. S., Zikria, S., Mahmood, S., He, J., ... & Aslam, M. (2022). Dad-net: Classification of alzheimer’s disease using adasyn oversampling technique and optimized neural network. Molecules, 27(20), 7085. https://doi.org/10.3390/molecules27207085

Alsadhan, N. A. (2025). Image-Based Alzheimer’s Disease Detection Using Pretrained Convolutional Neural Network Models. arXiv preprint arXiv:2502.05815. https://doi.org/10.48550/arXiv.2502.05815

Cummings, J. L., Zhou, Y., & Van Stone, A. (2025). Drug repurposing for Alzheimer’s disease and other neurodegenerative disorders. Nat Commun 16, 1755.https://doi.org/10.1038/s41467-025-56690-4

Hu, Z., Wang, Z., Jin, Y., & Hou, W. (2023). VGG-TSwinformer: Transformer-based deep learning model for early Alzheimer’s disease prediction. Computer Methods and Programs in Biomedicine, 229, 107291. https://doi.org/10.1016/j.cmpb.2022.107291

Kaštelan, S., Gverović Antunica, A., Puzović, V., Didović Pavičić, A., Čanović, S., Kovačević, P., ... & Konjevoda, S. (2025). Non-Invasive Retinal Biomarkers for Early Diagnosis of Alzheimer’s Disease. Biomedicines, 13(2), 283. https://doi.org/10.3390/biomedicines13020283

Khemariya, N., & Sonker, S. S. (2025). An intelligent deep transfer learning platform for accurate classification of multiclass brain tumor. Journal of Integrated Science and Technology, 13(6), 1142-1142. https://doi.org/10.62110/sciencein.jist.2025.v13.1142

Li, X., Feng, X., Sun, X., Hou, N., Han, F., & Liu, Y. (2022). Global., regional., and national burden of Alzheimer’s disease and other dementias, 1990–2019. Frontiers in aging neuroscience, 14, 937486.https://doi.org/10.3389/fnagi.2022.937486

Loddo, A., & Putzu, L. (2021). On the effectiveness of leukocytes classification methods in a real application scenario. AI, 2(3), 394-412. https://doi.org/10.3390/ai2030025

Menagadevi, M., Mangai, S., Madian, N., & Thiyagarajan, D. (2023). Automated prediction system for Alzheimer detection based on deep residual autoencoder and support vector machine. Optik, 272, 170212. https://doi.org/10.1016/j.ijleo.2022.170212

Meng, X., liu, B., Chen, B., zhu, W., Gu, Y., Ren, K., & Yang, B. (2025). FOPC-Det: A Universal Vehicle Detection Method for UAV Aerial Images Based on Feature Optimization and Precise Convolution. Measurement Science and Technology. https://doi.org/10.1088/1361-6501/addbf7

Mmadumbu, A. C., Saeed, F., Ghaleb, F., & Qasem, S. N. (2025). Early detection of Alzheimer’s disease using deep learning methods. Alzheimer’s & Dementia, 21(5), e70175. https://doi.org/10.1002/alz.70175

Murguiondo-Pérez, R., Bautista-Gonzalez, M. F., Cano-Herrera, G., Méndez-Vionet, A., Vargas-Sánchez, M., Vélez-Rodríguez, I., ... & Esparza Salazar, F. (2025). Comprehensive approaches in Alzheimer’s disease: from general aspects to stem cell therapy and antidiabetic use. Revista mexicana de neurociencia, 26(3), 95-102. https://doi.org/10.24875/rmn.24000049

Sorour, S. E., Abd El-Mageed, A. A., Albarrak, K. M., Alnaim, A. K., Wafa, A. A., & El-Shafeiy, E. (2024). Classification of Alzheimer’s disease using MRI data based on Deep Learning Techniques. Journal of King Saud University-Computer and Information Sciences, 36(2), 101940. https://doi.org/10.1016/j.jksuci.2024.101940

Techa, C., Ridouani, M., Hassouni, L., & Anoun, H. (2022, November). Alzheimer’s disease multi-class classification model based on CNN and StackNet using brain MRI data. In International Conference on Advanced Intelligent Systems and Informatics (pp. 248-259). Cham: Springer International Publishing.

Techa, C., Ridouani, M., Hassouni, L., & Anoun, H. (2022, November). Alzheimer’s disease multi-class classification model based on CNN and StackNet using brain MRI data. In International Conference on Advanced Intelligent Systems and Informatics (pp. 248-259). Cham: Springer International Publishing.

Tuvshinjargal., B., & Hwang, H. (2022). VGG-C transform model with batch normalization to predict Alzheimer’s disease through MRI dataset. Electronics, 11(16), 2601. https://doi.org/10.3390/electronics11162601

van Oostveen, W. M., & de Lange, E. C. (2021). Imaging techniques in Alzheimer’s disease: a review of applications in early diagnosis and longitudinal monitoring. International journal of molecular sciences, 22(4), 2110. https://doi.org/10.3390/ijms22042110

Vrahatis, A. G., Skolariki, K., Krokidis, M. G., Lazaros, K., Exarchos, T. P., & Vlamos, P. (2023). Revolutionizing the early detection of Alzheimer’s disease through non-invasive biomarkers: the role of artificial intelligence and deep learning. Sensors, 23(9), 4184. https://doi.org/10.3390/s23094184

Yaqoob, N., Khan, M. A., Masood, S., Albarakati, H. M., Hamza, A., Alhayan, F., ... & Masood, A. (2024). Prediction of Alzheimer’s disease stages based on ResNet-Self-attention architecture with Bayesian optimization and best features selection. Frontiers in Computational Neuroscience, 18, 1393849. https://doi.org/10.3389/fncom.2024.1393849

Zhang, Y., Teng, Q., He, X., Niu, T., Zhang, L., Liu, Y., & Ren, C. (2023, July). Attention- based 3D CNN with Multi-layer Features for Alzheimer’s Disease Diagnosis using Brain Images. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1-4). IEEE. https://doi.org/10.1109/EMBC40787.2023.10340536

Downloads

Published

2025-12-17

How to Cite

Alzheimer’s Disease Detection Using Lightweight Convolutional Neural Network on MRI Scans. (2025). American Journal of Bioscience and Bioinformatics, 4(1), 31-39. https://doi.org/10.54536/ajbb.v4i1.5943

Similar Articles

You may also start an advanced similarity search for this article.