Alzheimer’s Disease Detection Using Lightweight Convolutional Neural Network on MRI Scans
DOI:
https://doi.org/10.54536/ajbb.v4i1.5943Keywords:
Deep Learning, Detection, Disease Classification, Early Detection, Kaggle Dataset, Medical Images AnalysisAbstract
This research suggests a lightweight Convolutional Neural Network (CNN) model for Alzheimer’s Disease (AD) detection and classification from Magnetic Resonance Imaging (MRI) scans. Two models were trained: a binary model distinguishing AD from non-AD cases and a multi-class model distinguishing four stages of dementia (Non-Demented, Very Mild-Demented, Mild Demented, and Moderate Demented). The models were trained on a Kaggle dataset with high accuracy (97.5% binary, 89.3% multi-class). The research demonstrates the viability of lightweight CNNs for low-cost and precise AD diagnosis, with class imbalance managed through data augmentation.
Downloads
References
Ahmed, G., Er, M. J., Fareed, M. M. S., Zikria, S., Mahmood, S., He, J., ... & Aslam, M. (2022). Dad-net: Classification of alzheimer’s disease using adasyn oversampling technique and optimized neural network. Molecules, 27(20), 7085. https://doi.org/10.3390/molecules27207085
Alsadhan, N. A. (2025). Image-Based Alzheimer’s Disease Detection Using Pretrained Convolutional Neural Network Models. arXiv preprint arXiv:2502.05815. https://doi.org/10.48550/arXiv.2502.05815
Cummings, J. L., Zhou, Y., & Van Stone, A. (2025). Drug repurposing for Alzheimer’s disease and other neurodegenerative disorders. Nat Commun 16, 1755.https://doi.org/10.1038/s41467-025-56690-4
Hu, Z., Wang, Z., Jin, Y., & Hou, W. (2023). VGG-TSwinformer: Transformer-based deep learning model for early Alzheimer’s disease prediction. Computer Methods and Programs in Biomedicine, 229, 107291. https://doi.org/10.1016/j.cmpb.2022.107291
Kaštelan, S., Gverović Antunica, A., Puzović, V., Didović Pavičić, A., Čanović, S., Kovačević, P., ... & Konjevoda, S. (2025). Non-Invasive Retinal Biomarkers for Early Diagnosis of Alzheimer’s Disease. Biomedicines, 13(2), 283. https://doi.org/10.3390/biomedicines13020283
Khemariya, N., & Sonker, S. S. (2025). An intelligent deep transfer learning platform for accurate classification of multiclass brain tumor. Journal of Integrated Science and Technology, 13(6), 1142-1142. https://doi.org/10.62110/sciencein.jist.2025.v13.1142
Li, X., Feng, X., Sun, X., Hou, N., Han, F., & Liu, Y. (2022). Global., regional., and national burden of Alzheimer’s disease and other dementias, 1990–2019. Frontiers in aging neuroscience, 14, 937486.https://doi.org/10.3389/fnagi.2022.937486
Loddo, A., & Putzu, L. (2021). On the effectiveness of leukocytes classification methods in a real application scenario. AI, 2(3), 394-412. https://doi.org/10.3390/ai2030025
Menagadevi, M., Mangai, S., Madian, N., & Thiyagarajan, D. (2023). Automated prediction system for Alzheimer detection based on deep residual autoencoder and support vector machine. Optik, 272, 170212. https://doi.org/10.1016/j.ijleo.2022.170212
Meng, X., liu, B., Chen, B., zhu, W., Gu, Y., Ren, K., & Yang, B. (2025). FOPC-Det: A Universal Vehicle Detection Method for UAV Aerial Images Based on Feature Optimization and Precise Convolution. Measurement Science and Technology. https://doi.org/10.1088/1361-6501/addbf7
Mmadumbu, A. C., Saeed, F., Ghaleb, F., & Qasem, S. N. (2025). Early detection of Alzheimer’s disease using deep learning methods. Alzheimer’s & Dementia, 21(5), e70175. https://doi.org/10.1002/alz.70175
Murguiondo-Pérez, R., Bautista-Gonzalez, M. F., Cano-Herrera, G., Méndez-Vionet, A., Vargas-Sánchez, M., Vélez-Rodríguez, I., ... & Esparza Salazar, F. (2025). Comprehensive approaches in Alzheimer’s disease: from general aspects to stem cell therapy and antidiabetic use. Revista mexicana de neurociencia, 26(3), 95-102. https://doi.org/10.24875/rmn.24000049
Sorour, S. E., Abd El-Mageed, A. A., Albarrak, K. M., Alnaim, A. K., Wafa, A. A., & El-Shafeiy, E. (2024). Classification of Alzheimer’s disease using MRI data based on Deep Learning Techniques. Journal of King Saud University-Computer and Information Sciences, 36(2), 101940. https://doi.org/10.1016/j.jksuci.2024.101940
Techa, C., Ridouani, M., Hassouni, L., & Anoun, H. (2022, November). Alzheimer’s disease multi-class classification model based on CNN and StackNet using brain MRI data. In International Conference on Advanced Intelligent Systems and Informatics (pp. 248-259). Cham: Springer International Publishing.
Techa, C., Ridouani, M., Hassouni, L., & Anoun, H. (2022, November). Alzheimer’s disease multi-class classification model based on CNN and StackNet using brain MRI data. In International Conference on Advanced Intelligent Systems and Informatics (pp. 248-259). Cham: Springer International Publishing.
Tuvshinjargal., B., & Hwang, H. (2022). VGG-C transform model with batch normalization to predict Alzheimer’s disease through MRI dataset. Electronics, 11(16), 2601. https://doi.org/10.3390/electronics11162601
van Oostveen, W. M., & de Lange, E. C. (2021). Imaging techniques in Alzheimer’s disease: a review of applications in early diagnosis and longitudinal monitoring. International journal of molecular sciences, 22(4), 2110. https://doi.org/10.3390/ijms22042110
Vrahatis, A. G., Skolariki, K., Krokidis, M. G., Lazaros, K., Exarchos, T. P., & Vlamos, P. (2023). Revolutionizing the early detection of Alzheimer’s disease through non-invasive biomarkers: the role of artificial intelligence and deep learning. Sensors, 23(9), 4184. https://doi.org/10.3390/s23094184
Yaqoob, N., Khan, M. A., Masood, S., Albarakati, H. M., Hamza, A., Alhayan, F., ... & Masood, A. (2024). Prediction of Alzheimer’s disease stages based on ResNet-Self-attention architecture with Bayesian optimization and best features selection. Frontiers in Computational Neuroscience, 18, 1393849. https://doi.org/10.3389/fncom.2024.1393849
Zhang, Y., Teng, Q., He, X., Niu, T., Zhang, L., Liu, Y., & Ren, C. (2023, July). Attention- based 3D CNN with Multi-layer Features for Alzheimer’s Disease Diagnosis using Brain Images. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1-4). IEEE. https://doi.org/10.1109/EMBC40787.2023.10340536
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Venant Niyonkuru, Sekou Sylla, Zindazed Abdshahd Kasuli, Jimmy Jackson Sinzinkayo, Deo Kabanga

This work is licensed under a Creative Commons Attribution 4.0 International License.