Molecular Investigation Using RAPD-PCR Marker Field Populations of Pectinophora gossypiella Saunders (Lepidoptera: Gelechiidae) Exposed to Some Insecticide


  • Hanan Salah El-Din Taha Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt



P. Gossypiella, RAPD Primers, Polymorphism, Population Differentiation, Diversity, Egyptian Governorates, Distance, Similarity


Seasonally the cotton plant cultivated in Egyptian fields is suffering from the cotton Pink Bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) attacking fruits and buds. Insecticide applications reported control failure by the most recommended conventional classes. Monitoring pest DNA changes after sublethal exposure become the new technique to investigate. Then four insecticide treatments were screened by using the molecular marker polymerase chain reaction (PCR) inspection, using four Random amplified polymorphic deoxyribonucleic acid analysis (RAPD-PCR) primers partitioned based on band reproducibility. Result of LC50 was 0.55, 61.1, 69.3, and 0.23 for spinoteram, novaluron, metaflumezone, and dimeuron respectively. The insecticide treatments band of gel produced detected 47 loci ranging from 87 to 63 % polymorphism. The primer efficiency value of PIC =0.361, 0.34, 0.34, 0.355, and 0.262, RP = 5.30, H = 0.473, 0.434, 0.434, 0.462 and 0.31, and MI = 0.10, 0.1386, 0.138, 0.167 and 0.0582 for the same treated samples respectively. Distance and similarity were quantified based on Nei’s and genetic dissimilarity by the UPMGA method then a phylogenetic tree was constructed and grouped the entire genotypes into 2 major clusters and 6 subclusters. The RAPD primers revealed the number of alleles (Na = 0.324, 0.318, 0.318, 0.326, and 0.328), and the effective number of alleles (Ne = 0.571, 0.569, 0.558, 0.574, and 0.5784). The fixation-index (Fst) analysis narrated a very great genetic diversity (Fst = 0.626, 0.684, 0.684, 0.2, and 0.695) exists within the four treated samples respectively. The level of gene flow was (Nm = 0.239, 0.230, 0.230, 0.233, and 0.2187) respectively across the four genotypes studied. Results proved that the RAPD-PCR technique was suitable for distinguishing between insecticide treatments.


Download data is not yet available.


Abd-Elhady, H. K. and Abdel-Aal, A. A. (2011). Insecticides resistance detection in field-collected populations of Pectinophora gossypiella (Saunders). American Journal of Biochemistry and Molecular Biology, 1(4), 337-348.

Arif, I. A., Bakir, M. A., Khan, H. A., Al Farhan, A. H., Al Homaidan, A. A., Bahkali, A. H., Al Sadoon, M. and Shobrak, M. (2010). A brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 11, 2079-2096.

Al-Senosy, N.K. and Badr, F. A. A. (2018). Studies on Genetic Variations of Males and Females of Bactrocera zonata (Diptera: Tephritidae) Collected from Different Regions in Egypt. J. Plant Prot. and Path., Mansoura Univ., 9(11), 721 – 728.

Atienzar, F. A. and Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogene- sis studies: a critical review. Mutat. Res. 613, 76–102.

Bakr, R. F. A., Gesraha, M. A., Guneidy, N. A. M., Farag, N. A. E., Ebeid, A. R., Ali Elbeher, H. H. A. and Abou-Ellail, M. (2013). Molecular genetic identification of two bracon species based on RAPD-PCR and 16S rRNA genes. Egypt. C. Physiology & Molecular Biology. Acad. J. Biolog. Sci., 5(2), 99-107.

Botstein, D., White, R. L., Skolnick, M. and Davis, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Human Genetics, 32, 314-331.

Costa, R., Pereira, G., Garrido, I., María, M., de-Sousa, T. and Espinosa, F. (2016). Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify Orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS ONE, 11(4), e0152972

Culley, T. M., Wallace, L. E., Gengler-Nowak, K. M. and Crawford, D. J. (2002). A comparison of two methods of calculating GST, a genetic measure of population differentiation. American Journal of Botany, 89(3), 460–465.

Chesnokov, Yu. V. and Artemyeva, A. M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology, 50 (5), 571-578.

Darwish, A., Khidr, A. A., El-Heneidy, A. H., and Abdel-Aliem, H. I. (2017). Efficiency of different control methods against the cotton pink Bollworm Pectinophora gossypiella (Saund.) in cotton fields in Egypt. J. Plant Prot. &Path., Mansoura Univ., 8(2), 59- 64.

Dhakshanamoorthy, D., Selvaraj, R. and Chidambaram, A. (2015). Utility of RAPD marker for genetic diversity analysis in gamma rays and ethyl methane sulphonate (EMS)-treated Jatropha curcas plants. C. R. Biologies, 338, 75–82.

Doyle, J. J. and Doyle, J. L.(1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11-15

Eisen, D., Russell, E.G., Tymms, M., Roper, E.J., Grayson, M. L. and Turindge, J. (1995). Random amplified polymorphic DNA and plasmid analyses used in investigation of an outbreak of multiresistant Klebsiella pneumoniae. J Clin Microbiol 33, 713–717.

El-Bassouiny, H. M. (2021). Environmental friendly technique to control cotton pink bollworm Pectinophora gossypiella in Egypt. International Journal of Tropical Insect Science, 41, 1683–1687.

EL-Lebody, K. A, M. Halawa, S. H. and Ahmed, D. A. (2014). Laboratory and Field Evaluations of Two Biocides and an Insecticide against Pectinophora gossypiella (Saund.) (Lepidoptera: Gelechiidae) and Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Research Journal of Agriculture and Biological Sciences, 10(1), 37-46.

Evanno, G., Regnaut, S. and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol., 14, 2611–2620.

Finney, D. J. (1971). Probit Analysis. Cambridge University Press, London.

Hammer, Ø.; Harper, D.A.T. and Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, Vol. 4(1), art. 4:9pp.

Hames, B. D. (ed), (1998). Gel Electrophoresis of Proteins: A Practical Approach, 3rd edn, Oxford University Press, Oxford, New York (1998).

Hedrick, P. (2005). A standardized genetic differentiation measure. Evolution, 59(8), 1633-1638.

Irani, J., Pise, N. and Phatak, M. (2016). Clustering Techniques and the Similarity Measures used in Clustering: A Survey. International Journal of Computer Applications (0975 – 8887), 134(7), 9-14.

Jakobsson, M., Edge, M. D. and Rosenberg, N. A. (2013). The Relationship between FST and the frequency of the most frequent allele. Genetics, 193, 515–528.

John, H. (2004). Jaccard Distance (Jaccard Index, Jaccard Similarity Coefficient). In Dictionary of Bioinformatics and Computational Biology, Book chapter.

Jwada, R. Abdul., Al Rubaieeb, H. M., Khalila, F.AbdA. and Khaleel, A. I. (2018). Genetic diversity assessment of some stored insect species in Iraq based on RAPD molecular marker. Plant Archives, 18(1), 546-550.

Khan, MD M. H., Rafii, M. Y., Ramlee, S. I., Jusoh, M., Al Mamun. MD. and Halidu, J. (2021). DNA fingerprinting, fixation‑index (Fst), and admixture mapping of selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions using ISSR markers system. Scientific Reports, 11, 14527.

Khidr, A. A., Moawad, G. M., Desuky, W. M. H. and Raslan, S. A. (1996). Effect of some synthetic pyrethroids on bollworm larvae in cotton fields. Egypt.J.Agric.Res., 74(1), 123-132.

Kimura, M. and Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49, 725-738.

Kumari, N. and Thakur, S.K. (2014). Randomly amplified polymorphic DNA-a brief review. American Journal of Animal and Veterinary Sciences, 9(1), 6-13.

Lacy, D. B. and Stevens, R. C. (1999). Sequence Homology and Structural Analysis of the Clostridial Neurotoxins. J. Mol. Biol. 291, 1091-1104.

Lin, Y-S; Lin, C-Y, Hung, C-L, Chung, Y-C and Lee, K-Z. (2015). GPU-UPGMA: high-performance computing for UPGMA algorithm based on graphics processing units. Concurr Comput Pract Exp., 27, 3403–3414.

LeOra Software (1989). POLO-PC: a user’s guide to probit and logit analysis. LeOra Software, Berkeley, CA.

Nei, M. and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA, 76, 5269-5273.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA, 70, 3321–3323.

Perry, A. L., Worthington, T., Hilton, A. C., Lambert, P. A., Stirling, A. J. and Elliot, T. S. J. (2003). Analysis of clinical isolates of Propionibacterium acnes by optimised RAPD. FEMS Microbiol Lett, 228, 51–55.

Pimentel, G., Peever, T. L. and Carris, L. M. (2000). Genetic variation among natural populations of Tilletia controversa and T. bromi. Phytopathology, 90(4), 2000

Qari, S.H. and Abdel-Fattah, N.A.H. (2017). Genotoxic studies of selected plant oil extracts on Rhyzopertha dominica (Coleoptera: Bostrichidae). Journal of Taibah University for Science, 11, 478–486.

Quintaes, B. R., Leal, N. C., Reis, E. M. F. and Hofer, E. (2004). Optimization of randomly amplified polymorphic DNApolymerase chain reaction for molecular typing of Salmonella enterica serovar Typhi. Rev Soc Bras Med Trop 37, 143–147.

Raymond, M. and Rousset, F. (1995). GENEPOP (Version 1.2): Population genetics software for exact tests and Ecumenicism. The Journal of Heredity 1995, 86(3), 248–249.

Roehrdanz R. L. and Flanders R. V. (1993). Detection of DNA polymorphisms in predatory coccinellids using polymerase chain reaction and arbitrary primers (RAPD-PCR). Entomophaga, 38 (4), 479-491.

Roldan-Ruiz, I., Dendauw, J., VanBockstaele, E., Depicker, A. and De Loose, M. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.), Mol. Breed., 6, 125-134.

Salama, M. Abd-M. and Abd El-Baki, M. A. (2013). Efficiency of some insecticides sequence on cotton bollworms and histopathological effects of some biocides on pink bollworm larvae. Egypt. J. Agric. Res., 91(2), 429-448.

Sandhya, R. B., Prasad, N. V. V. S. D., Arjuna, R.P. and Srinivasa, R.V. (2010). Seasonal progression and incidence of Pectinophora gossypiella (Saunders) on Cotton. Ann. Plant. Prot. Sci., 2(18), 323-326.

Sarwar, M. (2017). Biological Parameters of Pink Bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae): A looming Threat for Cotton and its Eradication Opportunity. International J. of Research in Agriculture and Forestry, 4(7), 25-36.

Shirkhorshidi, A. S., Aghabozorgi, S., Wah, T. Y. (2015). A Comparison Study on Similarity and Dissimilarity Measures in Clustering Continuous Data. PLoS ONE 10(12), e0144059.

Schlüter, P. M. and Harris, S. A., (2006). Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Notes. 6, 569-572.

Singh, S., Mishra, V. K. and Bhoi, T. K. (2013). Insect Molecular Markers and its Utility- A Review. International Journal of Agriculture, Environment and Biotechnology (IJAEB), 10(4), 469-479.

Sneath, P. H. and Sokal, R. R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. 1st Edition, W. H. Freeman, San Francisco.

Tanani, M. and Ghoneim. K. (2018). Disruptive effects of certain chitin synthesis inhibitors on adult life parameters and reproductive potential of the Pink Bollworm, Pectinophora gossypiella (Saunders)(Lepidoptera:Gelechidae). Egypt. Acad.J.Biolog.Sci., 11(5), 79- 102.

Weir, B. S. and Cockerham, C. C. (1984). Estimating f-statistics for the analysis of population structure’. Evolution, 38(6), 1358-1370.

Wright, S., (1951). The genetically structure of populations. Ann. Eugen. 15, 323–354.




How to Cite

Taha, H. S. E.-D. (2023). Molecular Investigation Using RAPD-PCR Marker Field Populations of Pectinophora gossypiella Saunders (Lepidoptera: Gelechiidae) Exposed to Some Insecticide. American Journal of Bioscience and Bioinformatics, 2(1), 20–30.