Evaluating the Impact of Seed Nano-Priming with Green-Synthesized Copper Oxide Nanoparticles Using Mimosa pigra Leaf Extract on the Germination and Seedling Growth of Tomato (Solanum lycopersicum)
DOI:
https://doi.org/10.54536/ajbb.v3i1.3959Keywords:
Copper Oxide Nanoparticles, Green-synthesized nanoparticles, Mimosa pigra leaf extract, Seed Nano-Priming, Tomato (Solanum lycopersicum) germinationAbstract
This study explores the impact of seed nano-priming with green-synthesized copper oxide nanoparticles (CuO NPs) using Mimosa pigra leaf extract on the germination and seedling growth of tomato (Solanum lycopersicum). CuO NPs were synthesized through a plant-mediated green synthesis approach, where phytochemicals in M. pigra extract reduced Cu²⁺ ions and stabilized the nanoparticles. The resulting nanoparticles were characterized using UV-vis spectroscopy and SEM, revealing a surface plasmon resonance (SPR) peak at 224 nm and a nanoscale morphology with an average size of 108 nm. XRD analysis confirmed a crystalline monoclinic structure, with an average crystallite size of 30.68 nm. FTIR spectra showed characteristic Cu-O bond vibrations and plant-related functional groups, confirming successful nanoparticle synthesis. Seed germination experiments evaluated the effects of CuO NPs across a concentration gradient (0–1000 ppm). Results demonstrated a biphasic effect on germination and seedling growth. Low concentrations (5–100 ppm) enhanced germination percentages and growth metrics, while higher concentrations (≥500 ppm) inhibited these parameters. The 50 ppm treatment exhibited the highest germination rate, whereas 1000 ppm significantly suppressed seed germination and seedling growth. Statistical analysis indicated significant differences in root and shoot lengths across treatments, with oxidative stress and genotoxicity attributed to higher CuO NP concentrations as key inhibitory factors.These findings highlight the dual role of CuO NPs, emphasizing the potential of green-synthesized nanoparticles as bio-enhancers at optimal concentrations, while cautioning against their phytotoxic effects at elevated levels. This research underscores the need for further studies to optimize nanoparticle applications in agriculture and mitigate environmental risks.
Downloads
References
Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2019). Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustainable Chemistry & Engineering, 7(17), 14580–14590. https://doi.org/10.1021/acssuschemeng.9b02180
Ahmad, T., Irfan, M., Bustam, M. A., & Bhattacharjee, S. (2016). Effect of reaction time on green synthesis of gold nanoparticles by using aqueous extract of Elaeis guineensis (oil palm leaves). Procedia Engineering, 148, 467–472. https://doi.org/10.1016/j.proeng.2016.06.465
Ahuchaogu, A. A., Chukwu, O. J., & Echeme, J. O. (2017). Secondary metabolites from Mimosa pudica: Isolation, purification, and NMR characterization. IOSR Journal of Applied Chemistry, 10(3), 15–20. https://doi.org/10.9790/5736-1003011520
Alhalili, Z. (2022). Green synthesis of copper oxide nanoparticles (CuO NPs) from Eucalyptus globulus leaf extract: Adsorption and design of experiments. Arabian Journal of Chemistry, 15(5), 103739. https://doi.org/10.1016/j.arabjc.2022.103739
Alloway, B. J. (2014). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Springer Verlag.
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., & Lightfoot, D. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042
Amaliyah, S., Pangesti, D. P., Masruri, M., Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8), e04636. https://doi.org/10.1016/j.heliyon.2020.e04636
Amin, F., Fozia, Khattak, B., Alotaibi, A., Qasim, M., Ahmad, I., Ullah, R., Bourhia, M., Gul, A., Zahoor, S., & Ahmad, R. (2021). Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evidence-Based Complementary and Alternative Medicine, 2021, 1–12. https://doi.org/10.1155/2021/5589703
Amirmoradi, S., & Feizi, H. (2017). Can mean germination time predict seed vigor of canola (Brassica napus L.) seed lots? Acta Agrobotanica, 70(4). https://doi.org/10.5586/aa.1729
Ansari, M., Ahmed, S., Abbasi, A., Muhammad Tajammal Khan, Subhan, M., Bukhari, N. A., Ashraf Atef Hatamleh, & Abdelsalam, N. R. (2023). Plant-mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-45038-x
Atha, D. H., Wang, H.-Q., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., & Nelson, B. C. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 46(3), 1819–1827. https://doi.org/10.1021/es202660k
Azhar, W., Ali Raza Khan, Salam, A., Zaid Ulhassan, Qi, J., Shah, G., Liu, Y., Chunyan, Y., Yang, S., & Gan, Y. (2022). Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Environmental Science and Pollution Research, 30(10), 26137–26149. https://doi.org/10.1007/s11356-022-23915-8
Banu, K. S. (2015). General techniques involved in phytochemical analysis. International Journal of Advanced Research in Chemical Science, 2(4), 25–32.
Černík, M., & Thekkae Padil, V. V. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 8, 89. https://doi.org/10.2147/ijn.s40599
Chung, I. M., Rekha, K., Venkidasamy, B., & Thiruvengadam, M. (2019). Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water, Air, & Soil Pollution, 230(2). https://doi.org/10.1007/s11270-019-4084-2
Dawood, M. G. (2018). Stimulating plant tolerance against abiotic stress through seed priming. In Seed priming: The essential role of water in plant seed biology (pp. 147–183). https://doi.org/10.1007/978-981-13-0032-5_10
Dev, A., Srivastava, A. K., & Karmakar, S. (2017). Nanomaterial toxicity for plants. Environmental Chemistry Letters, 16(1), 85–100. https://doi.org/10.1007/s10311-017-0667-6
Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9). https://doi.org/10.1007/s11051-012-1125-9
El-Abeid, S. E., Mosa, M. A., Mohamed, S., Saleh, A. M., El-Khateeb, M. A., & Maha. (2024). Antifungal activity of copper oxide nanoparticles derived from Zizyphus spina leaf extract against Fusarium root rot disease in tomato plants. Journal of Nanobiotechnology, 22(1). https://doi.org/10.1186/s12951-023-02281-8
Elamin, N. Y., & Taha, A. (2023). Biogenic synthesis of copper oxide nanoparticles using Pimpinella anisum seed extract: Characterization and antibacterial activity. Oriental Journal of Chemistry, 39(1), 69–74. https://doi.org/10.13005/ojc/390108
Faraz, A., Faizan, M., Hayat, S., & Alam, P. (2022). Foliar application of copper oxide nanoparticles increases the photosynthetic efficiency and antioxidant activity in Brassica juncea. Journal of Food Quality, 2022, 1–10. https://doi.org/10.1155/2022/5535100
Faraz, A., Faizan, M., Rajput, V. D., Minkina, T., Hayat, S., Faisal, M., Alatar, A. A., & Abdel-Salam, E. M. (2023). CuO nanoparticle-mediated seed priming improves physio-biochemical and enzymatic activities of Brassica juncea. Plants, 12(4), 803. https://doi.org/10.3390/plants12040803
Feigl, G. (2023). The impact of copper oxide nanoparticles on plant growth: A comprehensive review. Journal of Plant Interactions, 18(1). https://doi.org/10.1080/17429145.2023.2243098
Garcia, D., Zhao, S., Arif, S., Zhao, Y., Ming, L., & Huang, D. (2022). Seed priming technology as a key strategy to increase crop plant production under adverse environmental conditions. https://doi.org/10.33140/jahr.05.01.04
Gross, M. S., Bean, T. G., Hladik, M. L., Rattner, B. A., & Kuivila, K. M. (2020). Uptake, metabolism, and elimination of fungicides from coated wheat seeds in Japanese quail (Coturnix japonica). Journal of Agricultural and Food Chemistry, 68(6), 1514–1524. https://doi.org/10.1021/acs.jafc.9b05668
Hosseinzadeh, E., Foroumadi, A., & Firoozpour, L. (2023). What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorganic Chemistry Communications, 147, 110243. https://doi.org/10.1016/j.inoche.2022.110243
Ibrahim, A. S., Ali, G. A. M., Hassanein, A., Attia, A. M., & Marzouk, E. R. (2022). Toxicity and uptake of CuO nanoparticles: Evaluation of an emerging nanofertilizer on wheat (Triticum aestivum L.) plant. Sustainability, 14(9), 4914. https://doi.org/10.3390/su14094914
Kacziba, B., Szierer, Á., Mészáros, E., Rónavári, A., Kónya, Z., & Feigl, G. (2023). Exploration of the homeostasis of signaling molecules in monocotyledonous crops with different CuO nanoparticle tolerance. Plant Stress, 7, 100145. https://doi.org/10.1016/j.stress.2023.100145
Kadri, O., Karmous, I., Kharbech, O., Arfaoui, H., & Chaoui, A. (2022). Cu and CuO nanoparticles affected the germination and the growth of barley (Hordeum vulgare L.) seedling. Bulletin of Environmental Contamination and Toxicology, 108(3), 585–593. https://doi.org/10.1007/s00128-021-03425-y
Karami Mehrian, S., & de Lima, R. (2016). Nanoparticles cyto- and genotoxicity in plants: Mechanisms and abnormalities. Environmental Nanotechnology, Monitoring & Management, 6, 184–193. https://doi.org/10.1016/j.enmm.2016.08.003
Karunagaran, V., & Sen, S. (2011). Biosynthesis of nanoparticles. International Journal of Pharmaceutical Sciences and Research, 2, 2781–2785.
Khaldari, I., Naghavi, M. R., & Motamedi, E. (2021). Synthesis of green and pure copper oxide nanoparticles using two plant resources via solid-state route and their phytotoxicity assessment. RSC Advances, 11(6), 3346–3353. https://doi.org/10.1039/d0ra09924d
Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6(3), 2128–2135. https://doi.org/10.1021/nn204643g
Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 24(4), 473–484. https://doi.org/10.1016/j.jsps.2014.11.013
Kumar, C. G., Pombala, S., Poornachandra, Y., & Agarwal, S. V. (2016). Synthesis, characterization, and applications of nanobiomaterials for antimicrobial therapy. In Nanobiomaterials in antimicrobial therapy (pp. 103–152). https://doi.org/10.1016/b978-0-323-42864-4.00004-x
Lade, B., & Shanware, A. (2020). Phytonanofabrication: Methodology and factors affecting biosynthesis of nanoparticles. https://doi.org/10.5772/intechopen.90918
Li, K. E., Chang, Z. Y., Shen, C. X., & Yao, N. (2015). Toxicity of nanomaterials to plants. In Nanomaterials and plants (pp. 101–123). https://doi.org/10.1007/978-3-319-14502-0_6
Mahmoud, A. E. D., Al-Qahtani, K. M., Alflaij, S. O., Al-Qahtani, S. F., & Alsamhan, F. A. (2021). Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91093-7
Maisuria, K., & Patel, S. T. (2009). Seed germinability, root and shoot length and vigour index of soybean as influenced by rhizosphere fungi. Karnataka Journal of Agricultural Sciences, 22, 1120–1122. https://api.semanticscholar.org/corpusid:82624279
Margenot, A. J., Rippner, D. A., Dumlao, M. R., Nezami, S., Green, P. G., Parikh, S. J., & McElrone, A. J. (2018). Copper oxide nanoparticle effects on root growth and hydraulic conductivity of two vegetable crops. Plant and Soil, 431(1-2), 333–345. https://doi.org/10.1007/s11104-018-3741-3
Martins, L. L., & Mourato, M. P. (2006). Effect of excess copper on tomato plants: Growth parameters, enzyme activities, chlorophyll, and mineral content. Journal of Plant Nutrition, 29(12), 2179–2198. https://doi.org/10.1080/01904160600972845
Mhara, Y., Sakhraoui, A., Ferchichi, Y., Khamassi, K., & Slim, R. (2022). The germination and early seedling growth of three Tunisian Lupinus L. species under copper and zinc-induced stress. 31, 11514–11521.
Mishra, D., Chitara, M. K., Negi, S., Singh, J. P., Kumar, R., & Chaturvedi, P. (2023). Biosynthesis of zinc oxide nanoparticles via leaf extracts of Catharanthus roseus (L.) G. Don and their application in improving seed germination potential and seedling vigor of Eleusine coracana (L.) Gaertn. Advances in Agriculture, 2023, 1–11. https://doi.org/10.1155/2023/7412714
Montanha, G. S., Santos, E., Paulo, J., de Almeida, E., Colzato, M., & Pereira, W. (2020). Zinc nanocoated seeds: An alternative to boost soybean seed germination and seedling development. SN Applied Sciences, 2(5). https://doi.org/10.1007/s42452-020-2630-6
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Murali, M., Gowtham, H. G., Singh, S. B., Shilpa, N., Aiyaz, M., Alomary, M. N., Alshamrani, M., Salawi, A., Almoshari, Y., Ansari, M. A., & Amruthesh, K. N. (2022). Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. Science of the Total Environment, 811, 152249. https://doi.org/10.1016/j.scitotenv.2021.152249
Naz, S., Gul, A., & Zia, M. (2020). Toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechnology, 14(1), 1–13. https://doi.org/10.1049/iet-nbt.2019.0176
Olusayo, S., Nnamdi, E., Afieroho, O., & Shorinwa, O. (2016). Evaluation of Mimosa pigra roots on haematological and biochemical parameters of albino rats. World Journal of Pharmaceutical Research, 5, 810–822. https://doi.org/10.20959/wjpr201645843
Panyuta, O., Belava, V. N., Fomaidi, S., Kalinichenko, O., Volkogon, M., & Taran, N. (2016). The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent. Journal of Nanomaterials, 11(1). https://doi.org/10.1186/s11671-016-1305-0
Rangasamy, M., Kumar Gopal, S., Indhumathi, A., Loganathan, S., Manikandan, S., & Naresh, R. (2023). Green synthesis and characterization of copper oxide nanoparticles using Tecoma stans. Journal of Pharmaceutical Research International, 35(7), 9–16. https://doi.org/10.9734/jpri/2023/v35i77335
Redhi, G. G. (2018). Green synthesis of metal nanoparticles and its reaction mechanisms. In Green synthesis of nanoparticles (pp. 113–139). https://doi.org/10.1002/9781119418900.ch4
Rosado-Vallado, M., Brito-Loeza, W., Mena-Rejón, G. J., Quintero-Marmol, E., & Flores-Guido, J. S. (2000). Antimicrobial activity of Fabaceae species used in Yucatán traditional medicine. Fitoterapia, 71(5), 570–573. https://doi.org/10.1016/s0367-326x(00)00200-8
Sabouri, Z., Sabouri, M., Amiri, M. S., Khatami, M., & Darroudi, M. (2020). Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Materials Technology, 1–14. https://doi.org/10.1080/10667857.2020.1863573
Sabouri, Z., Sabouri, S., Sadat, S., Mostafapour, A., Gheibihayat, S. M., & Darroudi, M. (2022). Plant-based synthesis of Ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb²⁺ ions. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02907-1
Seifipour, R., Nozari, M., & Pishkar, L. (2020). Green synthesis of silver nanoparticles using Tragopogon collinus leaf extract and study of their antibacterial effects. Journal of Inorganic and Organometallic Polymers and Materials. https://doi.org/10.1007/s10904-020-01441-9
Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G., Shamshad, S., Khalid, S., Natasha, M., Murtaza, G., Dumat, C., & Shahid, M. (2020). Copper uptake, essentiality, toxicity, detoxification, and risk assessment in soil-plant environment. Chemosphere, 259, 127436. https://doi.org/10.1016/j.chemosphere.2020.127436
Shalaby, T. A., Bayoumi, Y., Abdalla, N., Taha, H., Alshaal, T., Shehata, S., Amer, M., Domokos-Szabolcsy, É., & El-Ramady, H. (2016). Nanoparticles, soils, plants and sustainable agriculture. In Nanoscience in Food and Agriculture 1 (pp. 283–312). https://doi.org/10.1007/978-3-319-39303-2_10
Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93(6), 906–915. https://doi.org/10.1016/j.chemosphere.2013.05.044
Shende, S., Ingle, A. P., Gade, A., & Rai, M. (2015). Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology, 31(6), 865–873. https://doi.org/10.1007/s11274-015-1840-3
Shkir, M. (2022). Green method for synthesis and characterization of copper oxide nanoparticles using mulberry plant extract and their antibacterial, antioxidant, and photocatalytic activity. Physica Scripta, 97(10), 105001. https://doi.org/10.1088/1402-4896/ac8a7a
Siddiqi, K. S., & Husen, A. (2020). Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomaterials Research, 24(1). https://doi.org/10.1186/s40824-020-00188-1
Singh, A., B L R, Madhavi, & Sagar, N. (2021). An overview of green synthesis mediated metal nanoparticles preparation and its scale-up opportunities. Journal of Drug Delivery and Therapeutics, 11, 304–314. https://doi.org/10.22270/jddt.v11i6.5082
Sravanthi, M., Kumar, D. Muni, Usha, B., Rao, M. Mahendra, Hemalatha, K. P. J., & Ravichandra, M. (2016). Biological synthesis and characterization of copper oxide nanoparticles using Antigonon leptopus leaf extract and their antibacterial activity. International Journal of Advanced Research, 4(8), 589–602. https://doi.org/10.21474/ijar01/1251
Vijayaraghavan, K., & Ashokkumar, T. (2017). Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques, and applications. Journal of Environmental Chemical Engineering, 5(5), 4866–4883. https://doi.org/10.1016/j.jece.2017.09.026
Wang, X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in plants: Uptake, transport, and physiological activity in leaf and root. Materials, 16(8), 3097. https://doi.org/10.3390/ma16083097
Yang, Z., Xiao, Y., Jiao, T., Zhang, Y., Chen, J., & Gao, Y. (2020). Effects of copper oxide nanoparticles on the growth of rice (Oryza sativa L.) seedlings and the relevant physiological responses. International Journal of Environmental Research and Public Health, 17(4), 1260. https://doi.org/10.3390/ijerph17041260
Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R. M., Liu, Y., Ng, W. J., & Tan, S. K. (2014). Uptake and accumulation of CuO nanoparticles and CdS/ZnS quantum dot nanoparticles by Schoenoplectus tabernaemontani in hydroponic mesocosms. Ecological Engineering, 70, 114–123. https://doi.org/10.1016/j.ecoleng.2014.04.018
Zhang, D., Liu, X., Ma, J., Yang, H., Zhang, W., & Li, C. (2019). Genotypic differences and glutathione metabolism response in wheat exposed to copper. Environmental and Experimental Botany, 157, 250–259. https://doi.org/10.1016/j.envexpbot.2018.06.032
Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO₂ on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83–92. https://doi.org/10.1385/bter:104:1:083
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 H. K. S. Madusanka, A. G. B. Aruggoda, J. A. S. Chathurika, S. R. Weerakoon
This work is licensed under a Creative Commons Attribution 4.0 International License.