In Vivo Antiplasmodial Studies of Achyranthes Aspera Fractions and Molecular Docking Studies of Its Phytochemicals against Plasmodium Aspartic Proteases Targeted in Antimalarial Drug Design
DOI:
https://doi.org/10.54536/ajbb.v4i1.4516Keywords:
4-(3-Hydroxy-1-Propenyl-2-) Methoxy, Achyranthes Aspera, Antiplasmodial Activity Molecular Docking, Rotundioside BAbstract
Evaluation of fractionated extracts of Achyranthes aspera L. as an alternative antimalarial therapy is essential due to the increasing resistance of Plasmodium falciparum to artemisinin. The side effects, limited accessibility, and high cost of current drugs have intensified interest in phytochemical screening of medicinal plants as sources of bioactive compounds with antimalarial properties. The mode of action of these phytochemicals remains largely unknown, necessitating an investigation into their in vivo antimalarial activity and in silico molecular interactions with Aspartic Proteases (Plasmepsin I, II, and IV), key drug targets in malaria treatment. The in vivo antiplasmodial activity of Achyranthes aspera fractions was assessed using Rane’s curative assay in a mouse model infected intraperitoneally with 1x107 Plasmodium berghei (NK-65) parasitized RBCs per milliliter, while LC-MS techniques analyzed the phytochemical composition. In silico drug-likeness studies, including PASS, molecular docking, ADME/Tox, and Lipinski’s rule of five, were conducted, with chemical compounds docked against Plasmepsins I, II, and IV. Rane’s curative test showed significant (P<0.05) parasite reduction, with the chloroform fraction achieving more than 50% reduction at 200 mg/kg b.wt. LC-MS identified 37 compounds, 11 of which demonstrated plasmepsin inhibitory activity. Docking studies predicted Rotundioside B and 4-(3-hydroxy-1-propenyl-2-) methoxy as the most effective, exhibiting favourable binding energies. In silico ADMET analysis confirmed good oral bioavailability and drug-likeness properties. Findings indicate that A. aspera shoot fractions possess antiplasmodial activity, with the chloroform fraction significantly reducing P. berghei burden in a manner comparable to artemisinin-based combination therapy (ACT), supporting its potential for pharmaceutical drug development.
Downloads
References
Alam, M. T., Karim, M. M., & Khan, S. N. (2004). Antibacterial activity of different organic extracts of Achyranthes aspera and Cassia alata. Journal of Scientific Research, 1, 393–398.
Ashley, E. A., & et al. (2014). Spread of artemisinin resistance in Plasmodium falciparum. New England Journal of Medicine, 371(5), 411–423.
Ashwini, S., Varkey, S. P., & Shantaram, M. (2017). In silico docking of polyphenolic compounds against caspase-3-Hela cell line protein. International Journal of Drug Development & Research, 9, 28–32.
Balunas, M., & Kinghorn, A. (2005). Drug discovery from medicinal plants. Life Sciences, 78(5), 431–441.
Berry, C. (1997). New targets for antimalarial: The plasmoepsin, malaria parasite aspartic proteases. Biochemical Education, 25(4), 191–194.
Burkill, H. M. (1985). Lasiurus hirsutus (Forssk) Boiss (family Poaceae) In The useful plants of West Tropical Africa (2nd ed.). Royal Botanic Gardens.
CDC - DPDx - Diagnostic Procedures - Blood Specimens. (2019, January 8). Cdc.gov. https://www.cdc.gov/dpdx/diagnosticprocedures/blood/microexam.html?utm_source=chatgpt.com
Chileh-Chelh, T., López-Ruiz, R., García-Cervantes, A. M., Rodríguez-García, I., Rincón-Cervera, M. A., Ezzaitouni, M., & Guil-Guerrero, J. L. (2024). Cytotoxicity and chemotaxonomic significance of saponins from wild and cultured asparagus shoots. Molecules, 29(14), 3367. https://doi.org/10.3390/molecules29143367
Chilombe, M. B., McDermott, M. P., Seydel, K. B., Mathews, M., Mwenechanya, M., & Birbeck, G. L. (2022). Aggressive antipyretics in central nervous system malaria: Study protocol of a randomized-controlled trial assessing antipyretic efficacy and parasite clearance effects (Malaria FEVER study). PLoS ONE, 17(10), e0268414. https://doi.org/10.1371/journal.pone.0268414
Clarke, A. (2004). Is there a universal temperature dependence of metabolism? Functional Ecology, 18(2), 252–256. https://doi.org/10.1111/j.0269-8463.2004.00842.x
Coombs, G. H., Goldberg, D. E., Klemba, M., & et al. (2001). Aspartic properties of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends in Parasitology, 17(11), 523–527.
Davkova, I., Zhivikj, Z., Kukić-Marković, J., Cvetkovik-Karanfilova, I., Stefkov, G., Kulevanova, S., & Karapandzova, M. (2024). Natural products in the management of obesity. Arhiv za Farmaciju, 74(3), 298–315. https://doi.org/10.5937/arhfarm74-50438
Dondorp, A. M., & et al. (2009). Artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine, 361(5), 455–467.
Elumalai, E. K., Chandrasekaran, N., Thirumalai, N., Sivakumar, C., Theresa, S. V., & David, E. (2009). Achyranthes aspera leaf extract inhibited fungal growth. International Journal of Pharmaceutical Research, 1(4), 1576–1579.
Fidock, D. A., Eastman, R. T., Ward, S. A., & et al. (2008). Recent highlights in antimalarial drug resistance and cleaner apply research. Trends in Parasitology, 24(2), 537–544.
Francis, S. E., Sullivan, D. J., & Goldberg, and D. E. (1997). Hemoglobin Metabolism in The Malaria Parasiteplasmodium Falciparum. Annual Review of Microbiology, 51(1), 97–123. https://doi.org/10.1146/annurev.micro.51.1.97
Ibrahim, M., & Idoko, A. S. (2023). Phytochemical analysis of hexane, chloroform, ethyl acetate, ethanol, and aqueous extracts of Azanza garckeana leaf. Sahel Journal of Life Sciences FUDMA, 1(1), 25–31. https://doi.org/10.33003/sajols-2023-0101-003
Jain, J. B., Kumane, S. C., & Bhattacharya, S. (2006). Medicinal flora of Madhya Pradesh and Chhattisgarh: A review. Indian Journal of Traditional Medicine, 5(2), 237–242.
Kamau, E., S. Campino, L. Amenga-Etego, Drury, E., D. Ishengoma, Johnson, K., D. Mumba, M. Kekre, W. Yavo, Mead, D., M. Bouyou-Akotet, T. Apinjoh, L. Golassa, M. Randrianarivelojosia, B. Andagalu, O. Maiga-Ascofare, A. Amambua-Ngwa, P. Tindana, A. Ghansah, & MacInnis, B. (2014). K13-Propeller Polymorphisms in Plasmodium falciparum Parasites From Sub-Saharan Africa. The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiu608
Khodade, P., Prabhu, R., Chandra, N., Raha, S., & Govindarajan, R. (2007). Parallel implementation ofAutoDock. Journal of Applied Crystallography, 40(3), 598–599. https://doi.org/10.1107/s0021889807011053
Kumar, S. V., Sankar, P., & Varatharajan, R. (2009). Anti-inflammatory activity of roots of Achyranthes aspera. Pharmaceutical Biology, 47(10), 973–975.
Lagorce, D., Bouslama, L., Becot, J., Miteva, M. A., & Villoutreix, B. O. (2017). FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics, 33(22), 3658–3660. https://doi.org/10.1093/bioinformatics/btx491
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
Liu, S., Gluzman, I., Drew, M., & Goldberg, D. (2004). The role of Plasmodium falciparum food vacuole plasmepsin. Journal of Biological Chemistry, 280(2), 1432–1437.
Longdet, I. Y., Mary, M. M., Maria, O. O., & David, I. E. (2019). Copyright© 2019 by Academic Publishing House Researcher sro Published in the Slovak Republic Russian Journal of Biological Research. Russian Journal of Biological Research, 6(1).
López-Yerena, A., Perez, M., Vallverdú-Queralt, A., & Escribano-Ferrer, E. (2020). Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions. Pharmaceutics, 12(11), 1123. https://doi.org/10.3390/pharmaceutics12111123
Mankilik, M. M., Longdet, I. Y., & Luka, C. D. (2021). Evaluation of Achyranthes aspera shoot extract as an alternative therapy for malaria. The Journal of Basic and Applied Zoology, 82(1). https://doi.org/10.1186/s41936-021-00211-4
Menard, C., Hodes, G. E., & Russo, S. J. (2016). Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 321, 138–162.
Moura, P., Dame, J., & Fidock, D. (2009). Role of Plasmodium falciparum digestive vacuole plasmepsin in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors. Antimicrobial Agents and Chemotherapy, 53(12), 4968–4978.
National Research Council. (2011). Guide for the care and use of laboratory animals (8th ed.). National Academies Press. https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf
Noedl, H., Se, Y., Schaecher, K., Smith, B. L., Socheat, D., & Fukuda, M. M. (2008). Evidence of artemisinin-resistant malaria in western Cambodia. New England Journal of Medicine, 359(24), 2619-2620.
Pandey, K. C., & Dixit, R. (2012). Structure function of Plasmodium falciparum: Malarial cysteine proteases. Journal of Tropical Medicine, 1–11.
Priya, C. I., Kumar, G., Karthik, L., & Rao, K. V. (2010). Antioxidant activity of Achyranthes aspera Linn. stem extracts. Pharmacology Online, 2, 228–237.
Protsiv, M., Ley, C., Lankester, J., Hastie, T., & Parsonnet, J. (2020). Decreasing human body temperature in the United States since the Industrial Revolution. eLife, 9. https://doi.org/10.7554/elife.49555
Rao, Y. V., Govinda, R. D., Babu, G. S., & Rao, R. A. (2002). Immunomodulatory activity of Achyranthes aspera on the elicitation of antigen-specific murine antibody response. Pharmaceutical Biology, 40(3), 175–178.
Rashad, M., Adil, M. A., Siddique, M. B., Peerzadah, S., & Saadullah, M. (2024). Antioxidant and pharmacognostic evaluation of Achyranthes aspera: Therapeutic potential and analytical validation of secondary metabolites. Australian Herbal Insight, 7(1), 1–14. https://doi.org/10.25163/ahi.719692
Rasmussen, C., Alonso, P., & Ringwald, P. (2021). Current and emerging strategies to combat antimalarial resistance. Expert Review of Anti-Infective Therapy, 20(3), 1–20. https://doi.org/10.1080/14787210.2021.1962291
Rosenthal, P. (1998). Proteases of malaria parasites: New targets for chemotherapy. Emerging Infectious Diseases, 4(1), 49–57.
Ryley, J. F., & Peters, W. (1970). The antimalarial activity of some quinolone esters. Annals of Tropical Medicine & Parasitology, 64(2), 209-222.
Saglam, K., & Sekerler, T. (2024). A comprehensive review of the anti-obesity properties of medicinal plants. Pharmedicine Journal, 1(2), 46–67. https://doi.org/10.62482/pmj.10
Sahib, N. G., Saari, N., Ismail, A., Khatib, A., Mahomoodally, F., & Hamid, A. A. (2012). Plants’ metabolites as potential antiobesity agents. The Scientific World Journal, 2012, 1–8. https://doi.org/10.1100/2012/436039
Saurabh, S., Singh, P., Mishra, G., Jha, K. K., & Khosa, R. L. (2011). Achyranthes aspera – An important medicinal plant: A review. Journal of Natural Product and Plant Resources, 1(1), 1–14.
Shibeshi, M. A., Kifle, Z. D., & Atnafie, S. A. (2020). Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infection and drug resistance, 4047-4060.
Tiwari, P., Kaur, M. and Kaur, H. (2011) Phytochemical Screening and Extraction: A Review. Internationale Pharmaceutica Sciencia, 1, 98-106.
Tiwari, P., Nayak, P., Prusty, S. K., & Sahu, P. K. (2018). Phytochemistry and pharmacology of Tinospora cordifolia: A review. Sys Rev Pharm, 9(1), 70–78.
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multi-threading. Journal of Computational Chemistry, 31, 455–461.
WHO. (2021). World malaria report 2021. Retrieved March 2, 2025, from Who.int website: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
Wilson, D. W., Langer, C., Goodman, C. D., McFadden, G. I., & Beeson, J. G. (2013). Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 57(3), 1455–1467. https://doi.org/10.1128/aac.01881-12
Yared, D., Mekonnen, Y., & Debella, A. (2012). In vivo antimalarial activities of fractionated extracts of Asparagus africanus in mice infected with Plasmodium berghei. Pharmacologyonline, 3, 88-94.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mary Matawal Mankilik, Joel Paul, Daniel Hassan Mhya, Carrol Domkat Luka, Ishaya Yohanna Longdeta

This work is licensed under a Creative Commons Attribution 4.0 International License.