Transmission Dynamics of Typhoid Fever Outbreak: A Mathematical Modelling and Optimal Control Approach
DOI:
https://doi.org/10.54536/ajbb.v3i1.3503Keywords:
Booster Vaccination, Epidemiology, Optimal Control, Sensitivity Analysis, Typhoid FeverAbstract
In this paper, we propose and analyze a deterministic mathematical model for the control of typhoid fever. This model incorporates five effective control strategies, including vaccination, booster vaccination, personal hygiene, treatment, and bacteria sterilization, in order to effectively stop the spread of the disease in the population. The model consists of seven compartments, each representing a different stage in the disease’s progression: vaccinated, susceptible, carrier, infected, recovered, booster vaccinated, and bacterial. Using the next-generation matrix approach, we calculated the reproduction number , which measures the disease’s potential for spreading. Our stability analysis, using the Routh-Hurwitz criteria, revealed that the disease-free equilibrium point is locally asymptotically stable when is less than 1, among other conditions. This means that typhoid can be completely eradicated if the rate of secondary infection is kept below a certain threshold. Further sensitivity analyses were conducted to determine the key parameters that impact . Based on our findings, we formulated an optimal control problem and utilized Pontryagin’s Maximum Principle to determine the most effective strategy for controlling and eliminating the disease. Our results show that a combination of vaccination, booster vaccination, personal hygiene, treatment, and bacteria sterilization is the most optimal approach. With our comprehensive model and effective control strategies, we are one step closer to wiping out typhoid fever for good.
Downloads
References
Abboubakar, H., & Racke, R. (2021). Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics. Chaos, Solitons & Fractals, 149, 111074, 1-20. https://doi.org/10.1016/j.chaos.2021.111074
Abioye, A. I., Peter, O. J., Ogunseye, H. A., Oguntolu, F. A., Oshinubi, K., Ibrahim, A. A., & Khan, I. (2021). Mathematical model of COVID-19 in Nigeria with optimal control. Results in Physics, 28, 104598, 1-10. https://doi.org/10.1016/j.rinp.2021.104598
Adetunde, L. A. (2008). Mathematical methods for the dynamics of typhoid fever in Kassena-Nankana district of Upper East region of Ghana. Journal of Modern Mathematics and Statistics, 2(2), 45-49.
Alharbi, M. H., Alalhareth, F. K., & Ibrahim, M. A. (2023). Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination. Mathematics, 11(15), 3298, 1-26. https://doi.org/10.3390/math11153298
Antillón, M., Warren, J. L., Crawford, F. W., Weinberger, D. M., Kürüm, E., Pak, G. D., Marks, F., & Pitzer, V. E. (2017). The burden of typhoid fever in low-and middle-income countries: a meta-regression approach. PLoS neglected tropical diseases, 11(2), e0005376, 1-21. https://doi.org/10.1371/journal.pntd.0005376
Awoke, T. D. (2019). Optimal control strategy for the transmission dynamics of typhoid fever. American Journal of Applied Mathematics, 7(2), 37-49. https://doi.org/10.11648/j.ajam.20190702.11
Bailey, N. T. (1982). The structural simplification of an epidemiological compartment model. Journal of mathematical biology, 14, 101-116.
Birger, R., Antillón, M., Bilcke, J., Dolecek, C., Dougan, G., Pollard, A. J., Neuzil, K. M., Frost, I., Laxminarayan, R., & Pitzer, V. E. (2022). Estimating the effect of vaccination on antimicrobial-resistant typhoid fever in 73 countries supported by Gavi: a mathematical modelling study. The Lancet Infectious Diseases, 22(5), 679-691. https://doi.org/10.1016/S1473-3099(21)00627-7
Browne, A. J., Kashef Hamadani, B. H., Kumaran, E. A., Rao, P., Longbottom, J., Harriss, E., Moore, C. E., Dunachie, S., Basnyat, B., Baker, S., Lopez, A. D., Day, N. P. J., Hay, S. I., & Dolecek, C. (2020). Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis. BMC medicine, 18, 1-22. https://doi.org/10.1186/s12916-019-1443-1
da Silva, K. E., Tanmoy, A. M., Pragasam, A. K., Iqbal, J., Sajib, M. S. I., Mutreja, A., Veeraraghavan, B., Tamrakar, D., Qamar, F. N., Dougan, G., Bogoch, I., Seidman, J., Shakya, J., Vaidya, K., Carey, M.E., Rajeev, S., Irfan, S., Baker, S., Luby, S. P.,…Andrews, J. R. (2022). The international and intercontinental spread and expansion of antimicrobial-resistant Salmonella Typhi: a genomic epidemiology study. The Lancet Microbe, 3(8), e567-e577. https://doi.org/10.1016/S2666-5247(22)00093-3
Diekmann, O., Heesterbeek, J., & Metz, J. (1990). On the Definition and the Computation of the Basic Reproduction Ratio R0 in Models for Infection Disease in Heterogeneous Population. Journal of Mathematical Biology, 28, 365-382.
Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2), 29-48.
Emmanuel, U., Olivier, H., Gloria, H., & Olivier, N. M. J. (2023). Experimentally Study on Optimal Control of the Inertia of Water on the Thermal Performance of All-glass Evacuated Tube Solar Collector. American Journal of Energy and Natural Resources, 2(1), 15–19. https://doi.org/10.54536/ajenr.v2i1.1219
Eubank, S., Eckstrand, I., Lewis, B., Venkatramanan, S., Marathe, M., & Barrett, C. L. (2020). Commentary on Ferguson, et al.,“Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand”. Bulletin of mathematical biology, 82, 1-7. https://doi.org/10.1007/s11538-020-00726-x
Fleming,W.H. & Rishel,R.W.(1975). Deterministic and stochastic optimal control. Springer-Verlag; New York.
Garrett, D. O., Longley, A. T., Aiemjoy, K., Yousafzai, M. T., Hemlock, C., Alexander, T. Y., Vaidya, K., Tamrakar, D., Saha, S., Bogoch, I.I., Date, K., Saha, S., Islam, M.S., Sayeed, K.M.I., Bern, C., Shakoor, S., Dehraj, I., Mehmood, J.,Sajib, M.S.I. ...Luby, S. P. (2022). Incidence of typhoid and paratyphoid fever in Bangladesh, Nepal, and Pakistan: results of the Surveillance for Enteric Fever in Asia Project. The Lancet Global Health, 10(7), e978-e988. https://doi.org/10.1016/S2214-109X(22)00119-X
Ibrahim, O. M., Okuonghae, D., & Ikhile, M. N. (2023). Optimal control model for criminal gang population in a limited-resource setting. International Journal of dynamics and control, 11(2), 835-850. https://doi.org/10.1007/s40435-022-00992-8
Institute for Health Metrics and Evaluation (IHME). (2021). Typhoid fever—level 4 cause. https://www.healthdata.org/research-analysis/disease-injuries-risks/factsheets/2021-typhoid-fever-level-4-disease
Im, J., Islam, M. T., Kim, D. R., Ahmmed, F., Chon, Y., Zaman, K., Khan, A.I., Ali, M., Sur, D., Kanungo, S., Dutta, S., Bhattacharya, S.K., Dougan, G., Holt, K.E., Marks,F., Kim, J.H., Qadri, F., & Clemens, J. D. (2020). Protection conferred by typhoid fever against recurrent typhoid fever in urban Kolkata. PLoS neglected tropical diseases, 14(8), e0008530, 1-11. https://doi.org/10.1371/journal.pntd.0008530
Kailan Suhuyini, A., & Seidu, B. (2023). A mathematical model on the transmission dynamics of typhoid fever with treatment and booster vaccination. Frontiers in Applied Mathematics and Statistics, 9, Article 1151270. https://doi.org/10.3389/fams.2023.1151270
Klemm, E. J., Shakoor, S., Page, A. J., Qamar, F. N., Judge, K., Saeed, D. K., & Shaheen, G. (2018). Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. mBio, 9(1), Article e00105-18. https://doi.org/10.1128/mbio.00105-18
Mallick, U. K., & Biswas, M. H. A. (2020). Mathematical approach with optimal control: Reduction of unemployment problem in Bangladesh. Journal of Applied Nonlinear Dynamics, 9(2), 231-246. https://doi.org/10.5890/JAND.2020.06.006
Marchello, C. S., Birkhold, M., & Crump, J. A. (2020). Complications and mortality of typhoid fever: a global systematic review and meta-analysis. Journal of Infection, 81(6), 902-910. https://doi.org/10.1016/j.jinf.2020.10.030
Marks, F., von Kalckreuth, V., Aaby, P., Adu-Sarkodie, Y., El Tayeb, M. A., Ali, M., Aseffa, A., Baker, S., Biggs, H.M., Bjerregaard-Andersen, M., Breiman, R., Campbell, J.I., Cosmas, L., Crump, J.A., Espinoza, L.M.C., Deerin, J.F., Dekker, D.M.,Fields, B.S., Gasmelseed,N.,…Wierzba, T. F. (2017). Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. The Lancet Global Health, 5(3), e310-e323. https://doi.org/10.1016/S2214-109X(17)30022-0
Mayer, C. A., & Neilson, A. A. (2010). Typhoid and paratyphoid fever: Prevention in travellers. Australian family physician, 39(11), 847-851.
Milligan, R., Paul, M., Richardson, M., & Neuberger, A. (2018). Vaccines for preventing typhoid fever. Cochrane Database of Systematic Reviews, (5). https://doi.org/10.1002/14651858.CD001261.pub4
Momoh, A. A., Afiniki, Y., Déthié, D., & Abubakar, A. (2023). Curtailing the spread of typhoid fever: An optimal control approach. Results in Control and Optimization, 13, 100326, 1-19. https://doi.org./10.1016/j.rico.2023.100326
Mushayabasa, S. (2016). Modeling the impact of optimal screening on typhoid dynamics. International Journal of Dynamics and Control, 4(3), 330-338.
Mushayabasa, S., Bhunu, C. P., & Mhlanga, N. A. (2014). Modeling the transmission dynamics of typhoid in malaria endemic settings. Applications and Applied Mathematics: An International Journal (AAM), 9(1), 9.
Nana-Kyere, S., Boateng, F. A., Jonathan, P., Donkor, A., Hoggar, G. K., Titus, B. D., Kwarteng, D., & Adu, I. K. (2022). Global analysis and optimal control model of COVID-19. Computational and Mathematical Methods in Medicine, 2022, Article 9491847. https://doi.org/10.1155/2022/9491847
Nkuh, Y. R., Namondo, E. C., Kah, T. B., Nteimaah, L. N., & Ayuk, A. K. (2023). Community Perceptions on Health and Environmental Implications of Poor Management of Solid Waste Materials around local Dump Sites in the Buea Municipality, Cameroon. American Journal of Education and Technology, 2(3), 136–146. https://doi.org/10.54536/ajet.v2i3.1896
Patel, P. D., Liang, Y., Meiring, J. E., Chasweka, N., Patel, P., Misiri, T., Mwakiseghile, F., Wachepa, R., Banda, H.C., Shumba, F., Kawalazira, G., Dube, Q., Nampota-Nkomba, N., Nyirenda, O.M., Girmay, T., Datta, S., Jamka, L.P., Tracy, J.K., Laurens, M.B.,… Pair, T. (2024). Efficacy of typhoid conjugate vaccine: final analysis of a 4-year, phase 3, randomised controlled trial in Malawian children. The Lancet, 403(10425), 459-468. https://doi.org/10.1016/S0140-6736(23)02031-7
Peter, O. J., Afolabi, O. A., Oguntolu, F. A., Ishola, C. Y., & Victor, A. A. (2018). Solution of a deterministic mathematical model of typhoid fever by variational iteration method. Science World Journal, 13(2), 64-68.
Peter, O. J., Ibrahim, M. O., Edogbanya, H. O., Oguntolu, F. A., Oshinubi, K., Ibrahim, A. A., Ayoola, T.A., & Lawal, J. O. (2021). Direct and indirect transmission of typhoid fever model with optimal control. Results in Physics, 27, 104463, 1-9. https://doi.org/10.1016/j.rinp.2021.104463
Pitzer, V. E., Bowles, C. C., Baker, S., Kang, G., Balaji, V., Farrar, J. J., & Grenfell, B. T. (2014). Predicting the impact of vaccination on the transmission dynamics of typhoid in South Asia: a mathematical modeling study. PLoS neglected tropical diseases, 8(1), e2642, 1-12. https://doi.org/10.1371/journal.pntd.0002642
Pitzer, V. E., Bowles, C. C., Baker, S., Kang, G., Balaji, V., Farrar, J. J., & Grenfell, B. T. (2014). Predicting the impact of vaccination on the transmission dynamics of typhoid in South Asia: A mathematical modeling study. PLoS Neglected Tropical Diseases, 8(1), Article e2642. https://doi.org/10.1371/journal.pntd.0002642
Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. (1986). The mathematical theory of optimal processes (Vol. 4).
Siduppa, M. N., Toaha, S., & Kasbawati, K. (2023). Stability analysis and optimal control of mathematical model of typhoid fever spread. InPrime: Indonesian Journal of Pure and Applied Mathematics, 5(1), 22-37. https://doi.org/10.15408/inprime.v5i1.27205
Tilahun, G. T., Makinde, O. D., & Malonza, D. (2017). Modelling and optimal control of typhoid fever disease with cost-effective strategies. Computational and mathematical methods in medicine, 2017(1), 2324518,1-16. https://doi.org/10.1155/2017/2324518
Wameko, M., Koya, P., & Wodajo, A. (2020). Mathematical model for transmission dynamics of typhoid fever with optimal control strategies. International Journal of Industrial Mathematics, 12(3), 283-296. http://dorl.net/dor/20.1001.1.20085621.2020.12.3.8.8
World Health Organization. (2019). Typhoid vaccines: WHO position paper—March 2019. Weekly Epidemiological Record, 93, 153-172.
Yousafzai, M. T., Karim, S., Qureshi, S., Kazi, M., Memon, H., Junejo, A., Khawaja, Z., Rehman, N. U., Ansari, M. S., Ali, R., Ujjan, I. U., Lohana, H. M., Memon, N. M., Hussain, M., Nigar, R., Bar-Zeev, N., & Qamar, F. N. (2021). Effectiveness of typhoid conjugate vaccine against culture-confirmed Salmonella enterica serotype Typhi in an extensively drug-resistant outbreak setting of Hyderabad, Pakistan: A cohort study. The Lancet Global Health, 9(8), e1154-e1162. https://doi.org/10.1016/S2214-109X(21)00255-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Adrian Asamoah, Henry Otoo, Peter K. Nyarko

This work is licensed under a Creative Commons Attribution 4.0 International License.