AI-Driven Fraud Detection in Digital Banking: Ml Approach for Secure and Transparent Financial Transactions
DOI:
https://doi.org/10.54536/ajfti.v3i1.5168Keywords:
Artificial Intelligence (AI), Digital Banking, Fraud Detection, Machine Learning (ML)Abstract
The convenience of digital banking services has transformed the global financial industry and is now available to consumers all over the world. As with any advancement, there’s an increase in associated risk. In this case, we have an upsurge in fraudulent activity, the mobility of cybercriminals, and their more advanced technologies to breach vulnerabilities within digital infrastructures. Indeed, financial crimes are constantly evolving like the rest of technology and society. Those who monitor and manually analyse systems are no match for the speed at which criminals can devise new rule-of-thumb schemes. This article examines how artificial intelligence and machine learning can reform the detection of fraud within digital banking systems. The research analyses different techniques of AI and ML, supervised learning, unsupervised learning, ensemble, and deep learning approaches, while also observing their uses in practical fraud detection systems. The paper also analyses the ethical and legal concerns involving the use of AI within banking, considering data issues, algorithmic discrimination, and other contentious aspects of legal compliance, including quasi-legal frameworks like GDPR and PCI-DSS. It also explores some of the newer directions in AI, like quantum computing, explainable AI (XAI), and federated learning, and their potential implications to improving fraud detection systems performance. Finally, the focus of this paper has been on a continuing effort and partnership across sectors in building resilient, secure, transparent financial systems. AI, ML, and blockchain technologies enhance the capability to prevent fraud in digital banking, while ensuring and maintaining customer trust and security in financial transactions.
References
Abdelrhman, A. B. (2025). Popularity of mobile transaction services in the banking sector. American Journal of Financial Technology and Innovation, 3(1), 23–31. https://doi.org/10.54536/ajfti.v3i1.3807
Adaji, C. C., Bello, A. A., Ukatu, C. E., Okika, N., Agboola, O. K., & Amomo, C. G. (2025). AI-powered cybersecurity governance: The role of business analysts in ethical AI deployment. International Journal of Innovative Science and Research Technology, 10(3), 1384-1396. https://doi.org/10.38124/ijisrt/25mar924
Adeleke, A. G., Sanyaolu, T. O., Efunniyi, C. P., Akwawa, L. A., & Azubuko, C. F. (2024). API integration in FinTech: Challenges and best practices. Finance & Accounting Research Journal, 6(8), 1531-1554. https://doi.org/10.51594/farj.v6i8.1506
Adeyeri, T. B. (2024). AI-based fraud detection in banking and financial services. International Journal of Enhanced Research in Science, Technology & Engineering, 13(7).
Adhikari, P., Hamal, P., & Baidoo, F. J. (2024). Artificial intelligence in fraud detection: Revolutionizing financial security. International Journal of Science and Research Archive, 13(01), 1457–1472. https://doi.org/10.30574/ijsra.2024.13.1.1860
Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6, 100163. https://doi.org/10.1016/j.dajour.2023.100163
Alam, S., Ayub, M. S., Arora, S., & Khan, M. A. (2023). An investigation of the imputation techniques for missing values in ordinal data enhancing clustering and classification analysis validity. Decision Analytics Journal, 9, 100341. https://doi.org/10.1016/j.dajour.2023.100341
Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2021). Financial fraud detection based on machine learning: A systematic literature review. Applied Sciences, 12(19), 9637. https://doi.org/10.3390/app12199637
Aziz, L. A. R., & Andriansyah, Y. (2023). The role of artificial intelligence in modern banking: An exploration of AI-driven approaches for enhanced fraud prevention, risk management, and regulatory compliance. Reviews of Contemporary Business Analytics, 6(1), 110-132.
Barroso, M., & Laborda, J. (2022). Digital transformation and the emergence of the Fintech sector: Systematic literature review. Digital Business, 2(2), 100028. https://doi.org/10.1016/j.digbus.2022.100028
Bello, H. O., Ige, A. B., & Ameyaw, M. N. (2024). Adaptive machine learning models: Concepts for real-time financial fraud prevention in dynamic environments. World Journal of Advanced Engineering Technology and Sciences, 12(02), 021–034. https://doi.org/10.30574/wjaets.2024.12.2.0266
Bello, O. A., & Olufemi, K. (2024). Artificial intelligence in fraud prevention: Exploring techniques and applications, challenges, and opportunities. Computer Science & IT Research Journal, 5(6), 1505–1520.
Bello, O. A., Folorunso, A., Ejiofor, O. E., Budale, F. Z., Adebayo, K., & Babatunde, O. A. (2023). Machine learning approaches for enhancing fraud prevention in financial transactions. International Journal of Management Technology, 10(1), 85-109.
Bello, O. A., Folorunso, A., Ogundipe, A., Ajani, O. K., Budale, F. Z., & Ejiofor, O. E. (2022). Enhancing cyber financial fraud detection using deep learning techniques: A study on neural networks and anomaly detection. International Journal of Network and Communication Research, 7(1), 90-113.
Bhuiyan, M. S. M., Rafi, M. A., Rodrigues, G. N., Mir, M. N. H., Ishraq, A., Mridha, M., & Shin, J. (2025). Deep learning for algorithmic trading: A systematic review of predictive models and optimization strategies. Array, 100390. https://doi.org/10.1016/j.array.2025.100390
Bueno, L. A., Sigahi, T. F., Rampasso, I. S., Filho, W. L., & Anholon, R. (2024). Impacts of digitization on operational efficiency in the banking sector: Thematic analysis and research agenda proposal. International Journal of Information Management Data Insights, 4(1), 100230. https://doi.org/10.1016/j.jjimei.2024.100230
Cherif, A., Badhib, A., Ammar, H., Alshehri, S., Kalkatawi, M., & Imine, A. (2022). Credit card fraud detection in the era of disruptive technologies: A systematic review. Journal of King Saud University - Computer and Information Sciences, 35(1), 145-174. https://doi.org/10.1016/j.jksuci.2022.11.008
Chowdhury, R. H. (2024). Advancing fraud detection through deep learning: A comprehensive review. World Journal of Advanced Engineering Technology and Sciences, 12(02), 606–613. https://doi.org/10.30574/wjaets.2024.12.2.0332
Dangsawang, B., & Nuchitprasitchai, S. (2024). A machine learning approach for detecting customs fraud through unstructured data analysis in social media. Decision Analytics Journal, 10, 100408. https://doi.org/10.1016/j.dajour.2024.100408
Ezie, O., Oniore, J., & Ajaegbu, P. C. (2023). Financial technology and economic growth in Nigeria: 2012Q1-2022Q4. American Journal of Financial Technology and Innovation, 1(1), 35–45. https://doi.org/10.54536/ajfti.v1i1.2325
Ganaie, M., Hu, M., Malik, A., Tanveer, M., & Suganthan, P. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151. https://doi.org/10.1016/j.engappai.2022.105151
Goyal, K., Garg, M., & Malik, S. (2025). Adoption of artificial intelligence-based credit risk assessment and fraud detection in banking services: A hybrid approach (SEM-ANN). Future Business Journal, 11(1). https://doi.org/10.1186/s43093-025-00464-3
Hernandez Aros, L., Bustamante Molano, L. X., Moreno Hernandez, J. J., & Rodríguez Barrero, M. S. (2024). Financial fraud detection through the application of machine learning techniques: A literature review. Humanities and Social Sciences Communications, 11(1), 1-22. https://doi.org/10.1057/s41599-024-03606-0
Hernandez, M., Epelde, G., Alberdi, A., Cilla, R., & Rankin, D. (2022). Synthetic data generation for tabular health records: A systematic review. Neurocomputing, 493, 28–45. https://doi.org/10.1016/j.neucom.2022.04.053
Hilal, W., Gadsden, S. A., & Yawney, J. (2021). Financial fraud: A review of anomaly detection techniques and recent advances. Expert Systems with Applications, 193, 116429. https://doi.org/10.1016/j.eswa.2021.116429
Huang, Z., Zheng, H., Li, C., & Che, C. (2024). Application of machine learning-based K-means clustering for financial fraud detection. Academic Journal of Science and Technology, 10(1), 33-39. https://doi.org/10.54097/74414c90
Igah, R., & Luse, A. (2024). Unravelling Biased Blocking in The Adoption of Payattitude NFC Electronic Payment in Nigeria: An Exploratory Analysis. MWAIS 2024 Proceedings. 7. https://aisel.aisnet.org/mwais2024/7
Ikemefuna, C. D., Okusi, O., Iwuh, A. C., & Yusuf, S. (2024). Adaptive fraud detection systems: Using ML to identify and respond to evolving financial threats. International Research Journal of Modernization in Engineering Technology and Science, 6(9). https://doi.org/10.56726/IRJMETS61738
Islam, S., Gupta, G. R., Chakraborty, A., Singh, S., Soni, A., & Patle, C. (2025). Detecting fraudulent transactions for different patterns in financial networks using layer weighted GCN. Human-Centric Intelligent Systems. https://doi.org/10.1007/s44230-025-00097-3
Ismaeil, M. K. A. (2024). Harnessing AI for next-generation financial fraud detection: A data-driven revolution. Journal of Ecohumanism, 3(7), 811–821. https://doi.org/10.62754/joe.v3i7.4248
Iwedi, M. (2024). Digital finance infrastructure and growth of commercial banking firms in Nigeria. Discover Analytics, 2(1). https://doi.org/10.1007/s44257-024-00022-1
Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Khan, S. (2022). A review of blockchain technology applications for financial services. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(3), 100073. https://doi.org/10.1016/j.tbench.2022.100073
Johora, F. T., Hasan, R., Farabi, S. F., Akter, J., & Mahmud, M. A. A. (2024). AI-powered fraud detection in banking: Safeguarding financial transactions. The American Journal of Management and Economics Innovations, 6(06), 8-22.
Khan, A. A., Chaudhari, O., & Chandra, R. (2023). A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Systems with Applications, 244, 122778. https://doi.org/10.1016/j.eswa.2023.122778
Khando, K., Islam, M. S., & Gao, S. (2022). The emerging technologies of digital payments and associated challenges: A systematic literature review. Future Internet, 15(1), 21. https://doi.org/10.3390/fi15010021
Khodabandehlou, S., Golpayegani, A. H., & FiFrau, D. (2024). Unsupervised financial fraud detection in dynamic graph streams. ACM Transactions on Knowledge Discovery from Data, 27(5), 1-29.
Kipngetich, A. (2025). A review of online scams and financial frauds in the digital age. GSC Advanced Research and Reviews, 22(01), 302-329.
Li, X., Huang, J., Chen, C., & Zhang, Y. (2020). Credit card fraud detection using machine learning: A systematic literature review. Expert Systems with Applications, 164, 113909.
Mallesha, C., & Hymavathi, M. (2024). A review on AI and fraud detection in accounting: Reducing risks and enhancing financial security. Academy of Accounting and Financial Studies Journal, 28(2), 1-18.
Mejia, N. (2019). Artificial intelligence at Citibank - Current initiatives. EmerJ Artificial Intelligence Research. https://emerj.com/ai-at-citi/
Metha, S. (2025). AI-driven fraud detection: A risk scoring model for enhanced security in banking. Journal of Engineering Research and Reports, 27(3), 23–34. https://doi.org/10.9734/jerr/2025/v27i31415
Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information, 15(9), 517. https://doi.org/10.3390/info15090517
Mohmmed, A. A., Rahma, A. M. S., & AbdulWahab, H. B. (2024). Digital wallets evolution: Navigating challenges, innovation and the future landscape. Al-Qadisiyah Journal of Pure Science, 29(1), Article 4. https://doi.org/10.29350/2411-3514.1248
Muthunambu, N. K., Prabakaran, S., Kavin, B. P., Siruvangur, K. S., Chinnadurai, K., & Ali, J. (2024). A novel eccentric intrusion detection model based on recurrent neural networks with leveraging LSTM. Computers, Materials & Continua/Computers, Materials & Continua (Print), 78(3), 3089–3127. https://doi.org/10.32604/cmc.2023.043172
Odeyemi, O., Mhlongo, N. Z. M., Nwankwo, E. E., & Soyombo, O. T. (2024). Reviewing the role of AI in fraud detection and prevention in financial services. International Journal of Science and Research Archive, 11(01), 2101–2110. https://doi.org/10.30574/ijsra.2024.11.1.0279
Odufisan, O. I., Abhulimen, O. V., & Ogunti, E. O. (2025). Harnessing artificial intelligence and machine learning for fraud detection and prevention in Nigeria. Journal of Economic Criminology, 100127. https://doi.org/10.1016/j.jeconc.2025.100127
Oduro, N. D. A., Okolo, N. J. N., Bello, N. A. D., Ajibade, N. A. T., Fatomi, N. A. M., Oyekola, N. T. S., & Owoo-Adebayo, N. S. F. (2025). AI-powered fraud detection in digital banking: Enhancing security through machine learning. International Journal of Science and Research Archive, 14(3), 1412–1420. https://doi.org/10.30574/ijsra.2025.14.3.0854
Olowu, N. O., Adeleye, N. A. O., Omokanye, N. A. O., Ajayi, N. A. M., Adepoju, N. A. O., Omole, N. O. M., & Chianumba, N. E. C. (2024). AI-driven fraud detection in banking: A systematic review of data science approaches to enhancing cybersecurity. GSC Advanced Research and Reviews, 21(2), 227–237. https://doi.org/10.30574/gscarr.2024.21.2.0418
Onyekwuluje, T. P., Kpakpa, C. T., Panful, B., Apaflo, B. N., & Donkor, A. A. (2025). The role of IT compliance in enhancing cybersecurity measures for U.S. financial institutions. International Journal of Research Publication and Reviews, 6(1), 2600-2606.
Owen, R. (2021). Artificial intelligence at American Express - Two current use cases. EmerJ Artificial Intelligence Research. https://emerj.com/artificial-intelligence-at-american-express/
Oyedokun, O., Ewim, S. E., & Oyeyemi, O. P. (2024). A comprehensive review of machine learning applications in AML transaction monitoring. International Journal of Engineering Research and Development, 20(11), 730-743. https://www.ijerd.com
Oztas, B., Cetinkaya, D., Adedoyin, F., Budka, M., Aksu, G., & Dogan, H. (2024). Transaction monitoring in anti-money laundering: A qualitative analysis and points of view from industry. Future Generation Computer Systems, 159, 161–171. https://doi.org/10.1016/j.future.2024.05.027
Rahman, M., Yee, H. P., Masud, M. A. K., & Uzir, M. U. H. (2024). Examining the dynamics of mobile banking app adoption during the COVID-19 pandemic: A digital shift in the crisis. Digital Business, 4(2), 100088. https://doi.org/10.1016/j.digbus.2024.100088
Rojan, Z. (2024). Financial fraud detection based on machine and deep learning: A review. The Indonesian Journal of Computer Science, 13(3).
Roszkowska, P. (2021). Fintech in financial reporting and audit for fraud prevention and safeguarding equity investments. Journal of Accounting & Organizational Change, 17(2), 164-196.
Salunke, Y., Phalke, S., Madavi, M., Kumre, P., Bobhate, G. (2025). Fraud detection: A hybrid approach with logistic regression, decision tree, and random forest. Cureus Journal of Computational Science, 2, es44389-024-02350-5. https://doi.org/10.7759/s44389-024-02350-5
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3). https://doi.org/10.1007/s42979-021-00592-x
Sharma, P. (2024). How reinforcement learning keeps fraud detection smart and quick: Adapting to new fraud tricks. International Journal for Multidisciplinary Research (IJFMR), 6(2). https://www.ijfmr.com
Shaul, J., & Ingram, A. (2007). Database activity monitoring. In Elsevier eBooks (pp. 201–224). https://doi.org/10.1016/b978-159749198-3.50010-x
Tejesh, P., Sai, G. P., Naveen, D., Khaleel, V. S., & Rao, V. H. (2025). Detection of fraud in banking transactions by machine learning algorithm. International Journal of Research Publication and Reviews, 6(4), 1775–1778.
Trucco, E., McNeil, A., McGrory, S., Ballerini, L., Mookiah, M. R. K., Hogg, S., Doney, A., & MacGillivray, T. (2019). Validation. In Elsevier eBooks (pp. 157–170). https://doi.org/10.1016/b978-0-08-102816-2.00009-5
Venigandla, K., & Vemuri, N. (2022). RPA and AI-driven predictive analytics in banking for fraud detection. Tuijin Jishu/Journal of Propulsion Technology, 43(4).
Vens, C. (2013). Bagging. In Springer eBooks (pp. 68–69). https://doi.org/10.1007/978-1-4419-9863-7_602
Wang, X., Liu, H., & Yu, Z. (2019). A hybrid approach for fraud detection in online banking transactions. IEEE Access, 7, 64101-64113.
Wei, C., Xie, G., & Diao, Z. (2023). A lightweight deep learning framework for botnet detecting at the IoT edge. Computers & Security, 129, 103195. https://doi.org/10.1016/j.cose.2023.103195
Windasari, N. A., Kusumawati, N., Larasati, N., & Amelia, R. P. (2022). Digital-only banking experience: Insights from Gen Y and Gen Z. Journal of Innovation & Knowledge, 7(2), 100170. https://doi.org/10.1016/j.jik.2022.100170
Xuan, C. D., Duong, D., & Dau, H. X. (2021). A multi-layer approach for advanced persistent threat detection using machine learning based on network traffic. Journal of Intelligent & Fuzzy Systems, 40(6), 11311-11329.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oreoluwa Abimbola Serifat, Roseline C. Igah, Kehinde M Balogun, Gershom Randy Mensah, Emmanuel Niiboye Odai

This work is licensed under a Creative Commons Attribution 4.0 International License.

