A Sustainable Study on the Efficiency of Tilapia Fish Scales as Bio-Piezoelectric Nanogenerator

Authors

  • Michael B. Cervantes Department of Petroleum Engineering, College of Engineering, Palawan State University-Main Campus, Tiniguiban Heights, Puerto Princesa City 5300, Philippines
  • Charyze Arriane C. Naval Department of Petroleum Engineering, College of Engineering, Palawan State University-Main Campus, Tiniguiban Heights, Puerto Princesa City 5300, Philippines

DOI:

https://doi.org/10.54536/ajenr.v4i1.4608

Keywords:

Bio-Piezoelectric, Circular Economy, Mechanical Stress Sustainability, Tilapia Fish Scales

Abstract

With the global reliance on toxic and environmentally harmful batteries, communities are actively seeking sustainable materials to lessen the reliance on finite resources to foster a circular economy. This paper aimed to create a sustainable and cost-efficient alternative energy source by harnessing mechanical energy from bodily movements. The tilapia fish scales underwent a demineralization process using different solvents (EDTA, Acetic Acid, and Hydrochloric Acid) to enhance their piezoelectric properties and were dried under reduced pressure. Three prototypes were fabricated, each demineralized with different chemical solutions. These prototypes were tested for their voltage output under different mechanical applications such as finger pressing, hand slapping and foot pressing. The highest-performing prototype, treated with 0.05M hydrochloric acid, produced a maximum open-circuit voltage of approximately 39V, demonstrating the effectiveness of the Bio-PENG in generating electricity from ambient mechanical energy. Findings suggest that tilapia fish scales Bio-PENG can serve as a sustainable, flexible, and portable power solution, particularly for regions with limited access to electricity.

Downloads

Download data is not yet available.

References

Bairagi, S., Islam, S., Kumar, C., Babu, A., Aliyana, A., Stylios, G., Pillai, S., Mulvihill, D. (2023). Wearable nanocomposite textile-based piezoelectric and triboelectric nanogenerators: Progress and perspectives. Nano Energy, 118, 108962. https://doi.org/10.1016/j.nanoen.2023.108962.

Brusa, E., Carrera, A., & Delprete, C. (2023). A Review of Piezoelectric Energy Harvesting: Materials, Design, and Readout Circuits. Actuators, 12(12), 457. https://doi.org/10.3390/act12120457

Farghali, M., Osman, A. I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I. M. A., Yap, P., & Rooney, D. W. (2023). Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review. Environmental Chemistry Letters, 21(3), 1381–1418. https://doi.org/10.1007/s10311-023-01587-1

Farghali, M., Osman, A. I., Umetsu, K., & Rooney, D. W. (2022). Integration of biogas systems into a carbon zero and hydrogen economy: a review. Environmental Chemistry Letters, 20(5), 2853–2927. https://doi.org/10.1007/s10311-022-01468-z

Feng, X., Wenxue, Z., Yuanyuan, Q., & Huaibin, K. (2013). Optimization of demineralization on Cyprinus carpio haematopterus scale by response surface methodology. Journal of Food Science and Technology, 52(3), 1684–1690. https://doi.org/10.1007/s13197-013-1164-y

Foh, M., Kamara, M., Amadou, I., Foh, B., & Wenshui, X. (2010). Chemical and Physicochemical Properties of Tilapia (Oreochromis niloticus) Fish Protein Hydrolysate and Concentrate. International Journal of Biological Chemistry, 5(1), 21–36. https://doi.org/10.3923/ijbc.2011.21.36

Ghosh, S. K., & Mandal, D. (2016). High-performance bio-piezoelectric nanogenerator made with fish scale. Applied Physics Letters, 109(10). https://doi.org/10.1063/1.4961623

Hart, J. R. (1984). EDTA-type chelating agents in everyday consumer products: Some medicinal and personal care products. Journal of Chemical Education, 61(12), 1060. https://doi.org/10.1021/ed061p1060

Hills, A., Hennig, E., McDonald, M., & Bar-Or, O. (2001). Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. International Journal of Obesity, 25(11), 1674–1679. https://doi.org/10.1038/sj.ijo.0801785

Huang, C., Kuo, J., Wu, S., & Tsai, H. (2015). Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food Chemistry, 190, 997–1006. https://doi.org/10.1016/j.foodchem.2015.06.066

Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., & Mann, S. (2003). Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules, 32(3–5), 199–204. https://doi.org/10.1016/s0141-8130(03)00054-0

Jhothiraman, J. K., & Balachandran, R. (2019). Electroplating: Applications in the semiconductor industry. Advances in Chemical Engineering and Science, 09(02), 239–261. https://doi.org/10.4236/aces.2019. 92018

Kadler, K. E., Holmes, D. F., Trotter, J. A., & Chapman, J. A. (1996). Collagen fibril formation. Biochemical Journal, 316(1), 1–11. https://doi.org/10.1042/bj3160001

Khan, A., Joshi, R., Sharma, M. K., Huang, C., Yu, J., Wang, Y., & Lin, Z. (2024). The potential of organic piezoelectric materials for next-generation implantable biomedical devices. Nano Trends, 6, 100032. https://doi.org/10.1016/j.nwnano.2024.100032

Kumar, C., Gaur, A., Tiwari, S., Biswas, A., Rai, S. K., & Maiti, P. (2018). Bio-waste polymer hybrid as induced piezoelectric material with high energy harvesting efficiency. Composites Communications, 11, 56–61. https://doi.org/10.1016/j.coco.2018.11.004

Lay, R., Deijs, G. S., & Malmström, J. (2021). The intrinsic piezoelectric properties of materials – a review with a focus on biological materials. RSC Advances, 11(49), 30657–30673. https://doi.org/10.1039/d1ra03557f

Li, Y., Lu, D., & Wong, C. P. (2009). Electrical Conductive Adhesives with Nanotechnologies. Springer. https://doi.org/10.1007/978-0-387-88783-8

Liu, H., & Huang, K. (2014). Structural Characteristics of Extracted Collagen from Tilapia (Oreochromis mossambicus) Bone: Effects of Ethylenediaminetetraacetic Acid Solution and Hydrochloric Acid Treatment. International Journal of Food Properties, 19(1), 63–75. https://doi.org/10.1080/10942912. 2014.951939

Mendoza, C. B., Cayonte, D. D. D., Leabres, M. S., & Manaligod, L. R. A. (2019). Understanding multidimensional energy poverty in the Philippines. Energy Policy, 133, 110886. https://doi.org/10.1016/ j.enpol.2019.110886

Mori, H., Tone, Y., Shimizu, K., Zikihara, K., Tokutomi, S., Ida, T., Ihara, H., & Hara, M. (2012). Studies on fish scale collagen of Pacific saury (Cololabis saira). Materials Science and Engineering C, 33(1), 174–181. https://doi.org/10.1016/j.msec.2012.08.025

Mustafa, S. K., & AlSharif, M. A. (2018). Copper (CU) an essential Redox-Active transition metal in living System—A review article. American Journal of Analytical Chemistry, 9(1), 15–26. https://doi.org/10.4236/ajac.2018.91002

Rani, G. M., Wu, C., Motora, K. G., & Umapathi, R. (2022). Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. Journal of Cleaner Production, 363, 132532. https://doi.org/10.1016/j.jclepro.2022.132532

Ren, X., Fan, H., Zhao, Y., & Liu, Z. (2016). Flexible Lead-Free BIFEO3/PDMS-Based nanogenerator as piezoelectric Energy Harvester. ACS Applied Materials & Interfaces, 8(39), 26190–26197. https://doi.org/10.1021/acsami.6b04497

Robinson, B. H. (2009).E-waste: An assessment of global production and environmental impacts. Science of the Total Environment. 408(2), 183-191. https://doi.org/10.1016/j.scitotenv.2009.09.044

Sekhar, B. C., Dhanalakshmi, B., Srinivasa Rao, B., Ramesh, S., Venkata Prasad, K., Subba Rao, P. S. V., & Parvatheeswara Rao, B. (2021). Piezoelectricity and its applications. In D. R. Sahu (Ed.), Multifunctional ferroelectric materials. IntechOpen. https://doi.org/10.5772/intechopen.96154

Shaily, N., Kumar, A., & Ahmed, N. (2016). Imidazo[1,2-a]pyridine-substituted coumarin as a selective ratiometric sensor for Cu2+ ion. Supramolecular Chemistry, 29(2), 146–152. https://doi.org/10.1080/ 10610278. 2016.1190453

Sionkowska, A., & Kozlowska, J. (2013). Fish scales as a biocomposite of collagen and calcium salts. Key Engineering Materials, 587, 185–190. https://doi.org/10.4028/www.scientific.net/kem.587.185

Soudarthi, K., Kaleemullah, M., & Rao, B. (2020). Impact of piezoelectric materials in electric vehicles. International Journal of Engineering and Innovative Technology, 10(2), 28–31. https://doi.org/10.51456/ijeit.2020.v10i02.006

Sriphan, S., Charoonsuk, T., Maluangnont, T., & Vittayakorn, N. (2022). Piezoelectric energy harvesting for Low-Power smart Electronics. In Encyclopedia of Materials: Electronics(pp. 369–404). Elsevier. https://doi.org/10.1016/b978-0-12-819728-8.00050-4

Sy, S. A., & Mokaddem, L. (2022). Energy poverty in developing countries: A review of the concept and its measurements. Energy Research & Social Science, 89, 102562. https://doi.org/10.1016/j.erss.2022.102562

Tung, N. T., & Huyen, D. N. (2016). Effect of HCL on the formation of TIO2 nanocrystallites. Journal of Nanomaterials, 2016(1), 1–7. https://doi.org/10.1155/2016/6547271

Wang, S., Wen, L., Gong, X., Liang, J., Hou, X., & Hou, F. (2023). Piezoelectric-Based Energy Conversion and Storage Materials. Batteries. 9(7), 371. https://doi.org/10.3390/batteries9070371

Xu, S., Yang, H., Shen, L., & Li, G. (2017). Purity and yield of collagen extracted from southern catfish (Silurus meridionalis Chen) skin through improved pretreatment methods. International Journal of Food Properties, 20(sup1), S141–S153. https://doi.org/10.1080/10942912.2017.1291677

Yim, M. J., Li, Y., Moon, K., Paik, K. W., & Wong, C. P. (2008). Review of recent advances in electrically conductive adhesive materials and technologies in electronic packaging. Journal of Adhesion Science and Technology, 22(14), 1593–1630. https://doi.org/10.1163/156856108x320519

Yongo, E., Outa, N., Kito, K., & Matsushita, Y. (2018). Studies on the biology of Nile tilapia (Oreochromis niloticus) in Lake Victoria, Kenya: in light of intense fishing pressure. African Journal of Aquatic Science, 43(2), 195–198. https://doi.org/10.2989/16085914.2018.1455574

Zhang, M., Liu, W., and Li, G. (2009). Isolation and Characterisation of Collagens from the skin of Largefin Longbarbel Catfish (Mystus macropterus). Food chemistry, 115(3), 826-831. https://doi.org/10.1016/j.foodchem.2009.01.006

Zhao, L., Han, J., Zhang, X., & Wang, C., (2024). Fish Scale for Wearable, Self-Powered TENG. Nanomaterials, 14(5), 463. https://doi.org/10.3390/nano14050463

Downloads

Published

2025-09-22

How to Cite

Cervantes, M. B., & Naval, C. A. C. (2025). A Sustainable Study on the Efficiency of Tilapia Fish Scales as Bio-Piezoelectric Nanogenerator. American Journal of Energy and Natural Resources, 4(1), 29–37. https://doi.org/10.54536/ajenr.v4i1.4608