Quantifying the Variability of Solar Energy Fluctuations at High–Frequencies through Short-Scale Measurements in the East–Channel of Mozambique Conditions

Authors

  • Fernando V. Mucomole Eduardo Mondlane University, Faculty of Engineering, CS-OGET-Center of Excellence of Studies in Oil and Gas Engineering and Technology, Mozambique Avenue km 1.5, Maputo, Mozambique
  • Carlos S. A. Silva University of Lisbon, Instituto Superior Técnico, Department of Mechanical Engineering, Portugal, Lisbon
  • Lourenço L. Magaia Eduardo Mondlane University, Faculty of Sciences, Department of Mathematics and Informatics, Main Campus, 3453, Maputo, Mozambique

DOI:

https://doi.org/10.54536/ajenr.v3i1.2569

Keywords:

Fluctuations, High–Frequency, Variability, Solar Energy, Irradiance

Abstract

The solar power output of a solar plant is directly affected by changes in solar energy. To enhance the accuracy, durability, and efficiency of solar projections, it was necessary to quantify the rapid fluctuations in solar energy on a short–scale in the conditions of eastern Mozambique. An analytical approach was utilized to measure the high–frequency variations in the clear–sky index (K*t) and its increments (∆K*t). The results indicate that the K*t fluctuations in the nine stations along the eastern–channel of Mozambique ranged from 0.0001 to 0.9999, with a probability density (PDF) of fluctuations limited to 0.9991. Through statistical analysis, it was determined that ∆K*t reaches its maximum value near zero. Days with intermediate–sky conditions exhibited high PDF values of approximately 1.0 and greater deviation, while clear and cloudy–sky days displayed consistent solar energy frequencies and a lower tendency for K*t deviation. In conclusion, the correlation between high–fluctuation variability diminishes rapidly for shorter intervals. Furthermore, high–frequencies of fluctuations are observed during the hot and rainy season, whereas low frequencies are observed during the cold and dry season.

Downloads

Download data is not yet available.

References

Akuffo, F. O., & Brew-Hammond, A. (1993). The frequency distribution of daily global irradiation at Kumasi. Solar Energy, 50(2), 145–154. https://doi.org/10.1016/0038-092X(93)90086-4

Alam, M. J. E., Muttaqi, K. M., & Sutanto, D. (2014). A Novel Approach for Ramp-Rate Control of Solar PV Using Energy Storage to Mitigate Output Fluctuations Caused by Cloud Passing. IEEE Transactions on Energy Conversion, 29(2), 507–518. https://doi.org/10.1109/TEC.2014.2304951

Alva, G., Liu, L., Huang, X., & Fang, G. (2017). Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 68, 693–706. https://doi.org/10.1016/j.rser.2016.10.021

Anvari, M., Lohmann, G., Wächter, M., Milan, P., Lorenz, E., Heinemann, D., Tabar, M. R. R., & Peinke, J. (2016). Short term fluctuations of wind and solar power systems. New Journal of Physics, 18(6), 063027. https://doi.org/10.1088/1367-2630/18/6/063027

Attaviriyanupap, P., Tokuhara, K., Itaya, N., Marmiroli, M., Tsukamoto, Y., & Kojima, Y. (2011). Estimation of photovoltaic power generation output based on solar irradiation and frequency classification. 2011 IEEE PES Innovative Smart Grid Technologies, 1–7. https://doi.org/10.1109/ISGT-Asia.2011.6167078

Behr, H., Jung, C., Trentmann, J., & Schindler, D. (2021). Using satellite data for assessing spatiotemporal variability and complementarity of solar resources – a case study from Germany. Meteorologische Zeitschrift. https://doi.org/10.1127/metz/2021/1081

Cai, Y.-H., & Schäfer, A. I. (2020). Renewable energy powered membrane technology: Impact of solar irradiance fluctuation on direct osmotic backwash. Journal of Membrane Science, 598, 117666. https://doi.org/10.1016/j.memsci.2019.117666

Chen, W.-H., Cheng, L.-S., Chang, Z.-P., Zhou, H.-T., Yao, Q.-F., Peng, Z.-M., Fu, L.-Q., & Chen, Z.-X. (2022). Interval Prediction of Photovoltaic Power Using Improved NARX Network and Density Peak Clustering Based on Kernel Mahalanobis Distance. Complexity, 2022, 1–22. https://doi.org/10.1155/2022/8169510

Diaz, V. N. S. (2019). Avaliação de desempenho das estratégias de controle para suavização da potência ativa de sistemas fotovoltaicos com armazenamento de energia. https://tede.unioeste.br/handle/tede/4632

Domingos, S. F., Monteiro, L. G., & Boaventura, W. do C. (2020). Estado Da Arte Para Previsão Da Radiação Solar. Anais Congresso Brasileiro de Energia Solar - CBENS. https://doi.org/10.59627/cbens.2020.742

Duffie, J. A., & Beckman, W. A. (1991). Solar Engineering of Thermal Processes.

Elfeky, K. E., Mohammed, A. G., Ahmed, N., & Wang, Q. (2023). Thermal performance of cascaded and combined sensible-latent heat storage tank under fluctuations in sunlight and electric demand. Applied Thermal Engineering, 229, 120575. https://doi.org/10.1016/j.applthermaleng.2023.120575

Exell, R. H. B. (1976). The fluctuation of solar radiation in Thailand. Solar Energy, 18(6), 549–554. https://doi.org/10.1016/0038-092X(76)90074-8

Gomes, C. C. C., Torres, I. C., & Tiba, C. (2020). Taxas de rampas de irradiância e potência. CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar, 927–934. https://doi.org/10.34637/cies2020.1.6110

Gomes, J. M., Ferreira, P. M., & Ruano, A. E. (2011). Implementation of an intelligent sensor for measurement and prediction of solar radiation and atmospheric temperature. 2011 IEEE 7th International Symposium on Intelligent Signal Processing, 1–6. https://doi.org/10.1109/WISP.2011.6051713

Halász, G., & Malachi, Y. (2014). Solar energy from Negev desert, Israel: Assessment of power fluctuations for future PV fleet. Energy for Sustainable Development, 21, 20–29. https://doi.org/10.1016/j.esd.2014.04.005

Hoff, T. E., & Perez, R. (2010). Quantifying PV power Output Variability. Solar Energy, 84(10), 1782–1793. https://doi.org/10.1016/j.solener.2010.07.003

Hollands, K. G. T., D’Andrea, L. J., & Morrison, I. D. (1989). Effect of random fluctuations in ambient air temperature on solar system performance. Solar Energy, 42(4), 335–338. https://doi.org/10.1016/0038-092X(89)90036-4

Jain, H., Sengupta, M., Habte, A., & Tan, J. (2020). Quantifying Solar PV Variability at Multiple Timescales for Power Systems Studies. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), 0180–0185. https://doi.org/10.1109/PVSC45281.2020.9300658

Jamaly, S. M. (2020). Engineering Sciences (Mechanical Engineering).

Kumar, D. (2021). Spatial variability analysis of the solar energy resources for future urban energy applications using Meteosat satellite-derived datasets. Remote Sensing Applications: Society and Environment, 22, 100481. https://doi.org/10.1016/j.rsase.2021.100481

Kumar, D. S., Maharjan, S., Albert, & Srinivasan, D. (2022). Ramp-rate limiting strategies to alleviate the impact of PV power ramping on voltage fluctuations using energy storage systems. Solar Energy, 234, 377–386. https://doi.org/10.1016/j.solener.2022.01.059

Lan, H., Yin, H., Hong, Y.-Y., Wen, S., Yu, D. C., & Cheng, P. (2018). Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route. Applied Energy, 211, 15–27. https://doi.org/10.1016/j.apenergy.2017.11.014

Lave, M., Kleissl, J., & Arias-Castro, E. (2012). High-frequency irradiance fluctuations and geographic smoothing. Solar Energy, 86(8), 2190–2199. https://doi.org/10.1016/j.solener.2011.06.031

Leung, C. T. (1980). The fluctuation of solar irradiance in Hong Kong. Solar Energy, 25(6), 485–494. https://doi.org/10.1016/0038-092X(80)90080-8

Lohmann, G. (2018). Irradiance Variability Quantification and Small-Scale Averaging in Space and Time: A Short Review. Atmosphere, 9(7), 264. https://doi.org/10.3390/atmos9070264

Lohmann, G. M., & Monahan, A. H. (2018). Effects of temporal averaging on short-term irradiance variability under mixed sky conditions. Atmospheric Measurement Techniques, 11(5), 3131–3144. https://doi.org/10.5194/amt-11-3131-2018

Lohmann, G. M., Monahan, A. H., & Heinemann, D. (2018). Local short-term variability in solar irradiance.

Luoma, J., Kleissl, J., & Murray, K. (2011). Optimal inverter sizing considering cloud enhancement. Solar Energy, 86, 421–429. https://doi.org/10.1016/j.solener.2011.10.012

Madanchi, A., Absalan, M., Lohmann, G., Anvari, M., & Reza Rahimi Tabar, M. (2017). Strong short-term non-linearity of solar irradiance fluctuations. Solar Energy, 144, 1–9. https://doi.org/10.1016/j.solener.2017.01.008

Majzoobi, A., & Khodaei, A. (2016). Application of microgrids in addressing distribution network net-load ramping. 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 1–5. https://doi.org/10.1109/ISGT.2016.7781276

Mbaye, A. (2022). Review on Energy Audit: Benefits, Barriers, and Opportunities. American Journal of Energy and Natural Resources, 1(1), Article 1. https://doi.org/10.54536/ajenr.v1i1.1054

Mills, A. (2011). Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System.

Mucomole, F. V., Silva, C. A. S., & Magaia, L. L. (2023). Temporal Variability of Solar Energy Availability in the Conditions of the Southern Region of Mozambique. American Journal of Energy and Natural Resources, 2(1), Article 1. https://doi.org/10.54536/ajenr.v2i1.1311

Ocácia, G. C., & Santos, J. C. V. dos. (2008). Efeito de capacidade e de compensação na utilização de energia fotovoltaica e de energia eólica. Revista Liberato, 9(12), Article 12.

Park, J.-S., Katagi, T., Yamamoto, S., & Hashimoto, T. (2001). Operation control of photovoltaic/diesel hybrid generating system considering fluctuation of solar radiation. Solar Energy Materials and Solar Cells, 67(1), 535–542. https://doi.org/10.1016/S0927-0248(00)00325-1

Perez, M. J. R., & Fthenakis, V. M. (2015). On the spatial decorrelation of stochastic solar resource variability at long timescales. Solar Energy, 117, 46–58. https://doi.org/10.1016/j.solener.2015.04.020

Perez, R., David, M., Hoff, T. E., Jamaly, M., Kivalov, S., Kleissl, J., Lauret, P., & Perez, M. (2016). Spatial and Temporal Variability of Solar Energy. Foundations and Trends® in Renewable Energy, 1(1), 1–44. https://doi.org/10.1561/2700000006

Perez, R., Rábago, K. R., Trahan, M., Rawlings, L., Norris, B., Hoff, T., Putnam, M., & Perez, M. (2016). Achieving very high PV penetration – The need for an effective electricity remuneration framework and a central role for grid operators. Energy Policy, 96, 27–35. https://doi.org/10.1016/j.enpol.2016.05.016

Perpiñán, O., & Lorenzo, E. (2011). Analysis and synthesis of the variability of irradiance and PV power time series with the wavelet transform. Solar Energy, 85(1), 188–197. https://doi.org/10.1016/j.solener.2010.08.013

Perr, C. A. (1994). Solar-irradiance variations and regional precipitation fluctuations in the Western USA. International Journal of Climatology, 14(9), 969–983. https://doi.org/10.1002/joc.3370140903

Quoc Hung, D., & Mishra, Y. (2019). Voltage fluctuation mitigation: Fast allocation and daily local control of DSTATCOMs to increase solar energy harvest. IET Renewable Power Generation, 13(14), 2558–2568. https://doi.org/10.1049/iet-rpg.2019.0223

Rapti, A. S. (2000). Atmospheric transparency, atmospheric turbidity and climatic parameters. Solar Energy, 69(2), 99–111. https://doi.org/10.1016/S0038-092X(00)00053-0

Sha, A., & Aiello, M. (2018). Topological Considerations on Decentralised Energy Exchange in the Smart Grid. Procedia Computer Science, 130, 720–727. https://doi.org/10.1016/j.procs.2018.04.126

Sha, A., & Aiello, M. (2020). Topological considerations on peer-to-peer energy exchange and distributed energy generation in the smart grid. Energy Informatics, 3(1), 8. https://doi.org/10.1186/s42162-020-00109-5

Siebentritt, S. (2011). What limits the efficiency of chalcopyrite solar cells? Solar Energy Materials and Solar Cells, 95(6), 1471–1476. https://doi.org/10.1016/j.solmat.2010.12.014

Soubdhan, T., Emilion, R., & Calif, R. (2009). Classification of daily solar radiation distributions using a mixture of Dirichlet distributions. Solar Energy, 83(7), 1056–1063. https://doi.org/10.1016/j.solener.2009.01.010

Suri, M., Huld, T., Dunlop, E., Albuisson, M., Lefèvre, M., & Wald, L. (2007). Uncertainties in solar electricity yield prediction from fluctuation of solar radiation.

Syed, M. A., & Khalid, M. (2021). Neural network predictive control for smoothing of solar power fluctuations with battery energy storage. Journal of Energy Storage, 42, 103014. https://doi.org/10.1016/j.est.2021.103014

Tiba, C., Ramalho, R. D., Souza, J. L. de, & Silva, M. A. de A. da. (2016). VARIABILIDADE DA IRRADIAÇÃO SOLAR EM ESCALA DE MINUTO NO ESTADO DE ALAGOAS. Anais Congresso Brasileiro de Energia Solar - CBENS, 1–7. https://doi.org/10.59627/cbens.2016.1454

Trapero, J. R., Kourentzes, N., & Martin, A. (2015). Short-term solar irradiation forecasting based on Dynamic Harmonic Regression. Energy, 84, 289–295. https://doi.org/10.1016/j.energy.2015.02.100

Tu, C.-Y. (1987). A solar wind model with the power spectrum of Alfvénic fluctuations. Solar Physics, 109(1), 149–186. https://doi.org/10.1007/BF00167405

Twidell, J., & Weir, T. (2015). Renewable Energy Resources (3rd ed.). Routledge. https://doi.org/10.4324/9781315766416

Woyte, A., Belmans, R., & Nijs, J. (2007). Fluctuations in instantaneous clearness index: Analysis and statistics. Solar Energy, 81(2), 195–206. https://doi.org/10.1016/j.solener.2006.03.001

Woyte, A., Belmans, R., & Nijs, J. (2007). Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems. EURASIP Journal on Advances in Signal Processing, 2007(1), 080919. https://doi.org/10.1155/2007/80919

Woyte, A., Van Thong, V., Belmans, R., & Nijs, J. (2006). Voltage fluctuations on distribution level introduced by photovoltaic systems. IEEE Transactions on Energy Conversion, 21(1), 202–209. https://doi.org/10.1109/TEC.2005.845454

Zhang, S., & Yan, Y. (2022). Thermal performance of latent heat energy storage system with/without enhancement under solar fluctuation for Organic Rankine power cycle. Energy Conversion and Management, 270, 116276. https://doi.org/10.1016/j.enconman.2022.116276

Zheng, J., Du, J., Wang, B., Klemeš, J. J., Liao, Q., & Liang, Y. (2023). A hybrid framework for forecasting power generation of multiple renewable energy sources. Renewable and Sustainable Energy Reviews, 172, 113046. https://doi.org/10.1016/j.rser.2022.113046

Zhou, Y., Meng, X., Belle, J. H., Zhang, H., Kennedy, C., Al-Hamdan, M. Z., Wang, J., & Liu, Y. (2019). Compilation and spatio-temporal analysis of publicly available total solar and UV irradiance data in the contiguous United States. Environmental Pollution, 253, 130–140. https://doi.org/10.1016/j.envpol.2019.06.074

Downloads

Published

2024-04-07

How to Cite

Mucomole, F. V., Silva, C. S. A., & Magaia, L. L. (2024). Quantifying the Variability of Solar Energy Fluctuations at High–Frequencies through Short-Scale Measurements in the East–Channel of Mozambique Conditions. American Journal of Energy and Natural Resources, 3(1), 21–40. https://doi.org/10.54536/ajenr.v3i1.2569