A Systematic Review on the Accessibility of Spatial and Temporal Variability of Solar Energy Availability on a Short Scale Measurement

Authors

  • Fernando V. Mucomole Eduardo Mondlane University, Faculty of Engineering, CS–OGET–Center of Excellence of Studies in Oil and Gas Engineering and Technology, Mozambique Avenue km 1.5, Maputo, Mozambique
  • Carlos A. S. Silva University of Lisbon, Instituto Superior Técnico, Department of Mechanical Engineering, Lisbon, Portugal
  • Lourenço L. Magaia Eduardo Mondlane University, Faculty of Science, Department of Mathematics and Informatics, Main Campus, 3453, Maputo Mozambique

DOI:

https://doi.org/10.54536/ajenr.v3i1.2430

Keywords:

Accessibility, Solar, Spatio-Temporal, Mid-West, Variability, Mozambique

Abstract

The difficult access to energy in rural communities make up 80% of the world’s population, without access to electricity, strongly impels the need to establish the metric for access to this resource, to respond to the demand for inefficiency, fluctuations and instability that reduces output efficiency of a photovoltaic (PV) solar generator plant. The analysis of around 123 bibliographical sources accessed through the ePPI reviewer platform, focusing on the last 20 years, shows the majority to be applied to studies of small resolutions (one second) for hundreds of kilometers. One minute added to ten minutes of annual measurements is applied for thousands of interprovincial kilometers throughout Mid-western Mozambique. The potential is concluded as a source of spatial and temporal accessibility to the availability of solar energy is created.

Downloads

Download data is not yet available.

References

Adib, R. (2015). Renewables 2015 Global Status Report. Retrieved April 10, 2023, from https://www.taylorfrancis.com/books/mono/10.4324/9781849776981/applied-photovoltaics-alistair-sproul-richard-corkish-stuart-wenham-muriel-watt-martin-green.

Alharkan, H., Habib, S., & Islam, M. (2023). Solar Power Prediction Using Dual Stream CNN-LSTM Architecture. Sensors, 23(2), Article 2. https://doi.org/10.3390/s23020945

Almorox, J., Voyant, C., Bailek, N., Kuriqi, A., & Arnaldo, J. A. (2021). Total solar irradiance’s effect on the performance of empirical models for estimating global solar radiation: An empirical-based review. Energy, 236, 121486. https://doi.org/10.1016/j.energy.2021.121486

Amillo, A. G., Ntsangwane, L., Huld, T., & Trentmann, J. (2018). Comparison of satellite-retrieved high-resolution solar radiation datasets for South Africa. Journal of Energy in Southern Africa, 29(2). https://doi.org/10.17159/2413-3051/2017/v29i2a3376

Anenberg, S. C., Henze, D. K., Lacey, F., Irfan, A., Kinney, P., Kleiman, G., & Pillarisetti, A. (2017). Air pollution-related health and climate benefits of clean cookstove programs in Mozambique. Environmental Research Letters, 12(2), 025006. https://doi.org/10.1088/1748-9326/aa5557

Stuart R. Wenham, Martin A. Green, Muriel E. W. (2007), Applied Photovoltaics. Retrieved April 30, 2023, from https://www.taylorfrancis.com/books/mono/10.4324/9781849776981/applied-photovoltaics-alistair-sproul-richard-corkish-stuart-wenham-muriel-watt-martin-green

Arias-Castro, E., Kleissl, J., & Lave, M. (2014). A Poisson model for anisotropic solar ramp rate correlations. Solar Energy, 101, 192–202. https://doi.org/10.1016/j.solener.2013.12.028

Aryaputera, A. W., Yang, D., Zhao, L., & Walsh, W. M. (2015). Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. Solar Energy, 122, 1266–1278. https://doi.org/10.1016/j.solener.2015.10.023

Assuno, H. F., Escobedo, J. F., & Oliveira, A. P. (2003). Modelling frequency distributions of 5 minute-averaged solar radiation indexes using Beta probability functions. Theoretical and Applied Climatology, 75(3–4), 213–224. https://doi.org/10.1007/s00704-003-0733-9

Ayet, A., & Tandeo, P. (2018). Nowcasting solar irradiance using an analog method and geostationary satellite images. Solar Energy, 164, 301–315. https://doi.org/10.1016/j.solener.2018.02.068

Bailek, N., Bouchouicha, K., Abdel-Hadi, Y. A., El-Shimy, M., Slimani, A., Jamil, B., & Djaafari, A. (2020). Developing a new model for predicting global solar radiation on a horizontal surface located in Southwest Region of Algeria. NRIAG Journal of Astronomy and Geophysics, 9(1), 341–349. https://doi.org/10.1080/20909977.2020.1746892

Barry, J., Munzke, N., & Thomas, J. (2017). Power fluctuations in solar-storage clusters: Spatial correlation and battery response times. Energy Procedia, 135, 379–390. https://doi.org/10.1016/j.egypro.2017.09.516

Charabi, Y., & Gastli, A. (2012). Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data. Renewable Energy, 44, 23–31. https://doi.org/10.1016/j.renene.2011.12.005

Chen, W.-H., Cheng, L.-S., Chang, Z.-P., Zhou, H.-T., Yao, Q.-F., Peng, Z.-M., Fu, L.-Q., & Chen, Z.-X. (2022). Interval Prediction of Photovoltaic Power Using Improved NARX Network and Density Peak Clustering Based on Kernel Mahalanobis Distance. Complexity, 2022, 1–22. https://doi.org/10.1155/2022/8169510

Ciampi, M., Leccese, F., & Tuoni, G. (2015). Energy efficiency in buildings: A parameter for the thermal qualification of opaque building envelope.

Come Zebra, E. I., Mahumane, G., Canu, F. A., & Cardoso, A. (2021). Assessing the Greenhouse Gas Impact of a Renewable Energy Feed-in Tariff Policy in Mozambique: Towards NDC Ambition and Recommendations to Effectively Measure, Report, and Verify Its Implementation. Sustainability, 13(10), 5376. https://doi.org/10.3390/su13105376

Dambreville, R., Blanc, P., Chanussot, J., & Boldo, D. (2014). Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model. Renewable Energy, 72, 291–300. https://doi.org/10.1016/j.renene.2014.07.012

Dantas, P. V. S. (2015). Análise e dimensionamento de um sistema fotovoltaico com diferentes tecnologias no estágio de potência.

de Souza, A., Ihaddadene, R., Fernandes, W., & Abreu, M. C. (2012). Modeling of the Global Solar Radiation Series as a Function of Probability Distribution.

Di Fonzo, T., & Girolimetto, D. (2023). Spatio-temporal reconciliation of solar forecasts. Solar Energy, 251, 13–29. https://doi.org/10.1016/j.solener.2023.01.003

Duffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes. Wiley.

Gueymard, C. A., & Wilcox, S. M. (2011). Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data. Solar Energy, 85(5), 1068–1084. https://doi.org/10.1016/j.solener.2011.02.030

Gueymard, C., & Ruiz-Arias, J. A. (2015). Performance of Separation Models to Predict Direct Irradiance at High Frequency: Validation over Arid Areas. Proceedings of the EuroSun 2014 Conference, 1–10. https://doi.org/10.18086/eurosun.2014.08.06

Habte, A., Sengupta, M., Gueymard, C., Golnas, A., & Xie, Y. (2020). Long-term spatial and temporal solar resource variability over America using the NSRDB version 3 (1998–2017). Renewable and Sustainable Energy Reviews, 134, 110285. https://doi.org/10.1016/j.rser.2020.110285

Haegel, N. M., Margolis, R., Buonassisi, T., Feldman, D., Froitzheim, A., Garabedian, R., Green, M., Glunz, S., Henning, H.-M., Holder, B., Kaizuka, I., Kroposki, B., Matsubara, K., Niki, S., Sakurai, K., Schindler, R. A., Tumas, W., Weber, E. R., Wilson, G., … Kurtz, S. (2017). Terawatt-scale photovoltaics: Trajectories and challenges. Science, 356(6334), 141–143. https://doi.org/10.1126/science.aal1288

Hassan, M. A., Bailek, N., Bouchouicha, K., Ibrahim, A., Jamil, B., Kuriqi, A., Nwokolo, S. C., & El-kenawy, E.-S. M. (2022). Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theoretical and Applied Climatology, 150(1–2), 715–729. https://doi.org/10.1007/s00704-022-04166-6

Hoff, T. E., & Perez, R. (2011). PV Power Output Variability: Calculation of Correlation Coefficients Using Satellite Insolation Data.

Hoff, T. E., & Perez, R. (2010). Quantifying PV power Output Variability. Solar Energy, 84(10), 1782–1793. https://doi.org/10.1016/j.solener.2010.07.003

Hummon, M., Ibanez, E., Brinkman, G., & Lew, D. (2012). Sub-hour solar data for power system modeling from static spatial variability analysis: Preprint (NREL/CP-6A20-56204). National Renewable Energy Laboratory. https://www.osti.gov/biblio/1059579

Iban˜ez, M., Beckman, W. A., & Klein, S. A. (2002). Frequency Distributions for Hourly and Daily Clearness Indices. Journal of Solar Energy Engineering, 124(1), 28–33. https://doi.org/10.1115/1.1445443

International Finance Corporation. (2015). A project developer’s guide to utility-scale solar photovoltaic power plants. Washington, DC: Author. Retrieved December 11, 2023, from https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-hf?sfvrsn=669

Iqbal, M. (1983). An introduction to solar radiation. Academic Press.

Jain, A., Yamujala, S., Gaur, A., Das, P., Bhakar, R., & Mathur, J. (2023). Power sector decarbonization planning considering renewable resource variability and system operational constraints. Applied Energy, 331, 120404. https://doi.org/10.1016/j.apenergy.2022.120404

Jerez, S., Tobin, I., Turco, M., Jiménez-Guerrero, P., Vautard, R., & Montávez, J. P. (2019). Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe. Renewable Energy, 139, 251–260. https://doi.org/10.1016/j.renene.2019.02.060

Keeratimahat, K. (2020). Characterising short-term variability, uncertainty and controllability of utility photovoltaics and their implications for integrating high renewables penetrations.

Keeratimahat, K., Bruce, A. G., & MacGill, I. (2017). Short term variability of utility-scale PV in the Australian National Electricity Market.

Klein, S. A. (1977). Calculation of monthly average insolation on tilted surfaces. Solar Energy, 19(4), 325–329. https://doi.org/10.1016/0038-092X(77)90001-9

Klima, K., & Apt, J. (2015). Geographic smoothing of solar PV: Results from Gujarat. Environmental Research Letters, 10(10), 104001. https://doi.org/10.1088/1748-9326/10/10/104001

Kong, X., Du, X., Xu, Z., & Xue, G. (2023). Predicting solar radiation for space heating with thermal storage system based on temporal convolutional network-attention model. Applied Thermal Engineering, 219, 119574. https://doi.org/10.1016/j.applthermaleng.2022.119574

Koudouris, G., Dimitriadis, P., Iliopoulou, T., Mamassis, N., & Koutsoyiannis, D. (2018). A stochastic model for the hourly solar radiation process for application in renewable resources management. Advances in Geosciences, 45, 139–145. https://doi.org/10.5194/adgeo-45-139-2018

Kreuwel, F. P. M., Knap, W. H., Visser, L. R., Van Sark, W. G. J. H. M., Vilà-Guerau De Arellano, J., & Van Heerwaarden, C. C. (2020). Analysis of high frequency photovoltaic solar energy fluctuations. Solar Energy, 206, 381–389. https://doi.org/10.1016/j.solener.2020.05.093

Kühnert, J., Lorenz, E., & Heinemann, D. (2013). Satellite-Based Irradiance and Power Forecasting for the German Energy Market. In Solar Energy Forecasting and Resource Assessment (pp. 267–297). Elsevier. https://doi.org/10.1016/B978-0-12-397177-7.00011-5

Kumar, D. (2019). Hyper-temporal variability analysis of solar insolation with respect to local seasons. Remote Sensing Applications: Society and Environment, 15, 100241. https://doi.org/10.1016/j.rsase.2019.100241

Kumar, D. (2021). Spatial variability analysis of the solar energy resources for future urban energy applications using Meteosat satellite-derived datasets. Remote Sensing Applications: Society and Environment, 22, 100481. https://doi.org/10.1016/j.rsase.2021.100481

Lan, H., Yin, H., Hong, Y.-Y., Wen, S., Yu, D. C., & Cheng, P. (2018). Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route. Applied Energy, 211, 15–27. https://doi.org/10.1016/j.apenergy.2017.11.014

Lave, M., & Kleissl, J. (2013). Cloud speed impact on solar variability scaling – Application to the wavelet variability model. Solar Energy, 91, 11–21. https://doi.org/10.1016/j.solener.2013.01.023

Lave, M., Kleissl, J., & Arias-Castro, E. (2012). High-frequency irradiance fluctuations and geographic smoothing. Solar Energy, 86(8), 2190–2199. https://doi.org/10.1016/j.solener.2011.06.031

Lefèvre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., Qu, Z., Wald, L., Schroedter-Homscheidt, M., Hoyer-Klick, C., Arola, A., Benedetti, A., Kaiser, J. W., & Morcrette, J.-J. (2013). McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmospheric Measurement Techniques, 6(9), 2403–2418. https://doi.org/10.5194/amt-6-2403-2013

Litjens, G. B. M. A., Kausika, B. B., Worrell, E., & van Sark, W. G. J. H. M. (2018). A spatio-temporal city-scale assessment of residential photovoltaic power integration scenarios. Solar Energy, 174, 1185–1197. https://doi.org/10.1016/j.solener.2018.09.055

Liu, Y., Xiao, L., Wang, H., Dai, S., & Qi, Z. (2013). Analysis on the hourly spatiotemporal complementarities between China’s solar and wind energy resources spreading in a wide area. Science China Technological Sciences, 56(3), 683–692. https://doi.org/10.1007/s11431-012-5105-1

Lohmann, G. M. (2018). Irradiance Variability Quantification and Small-Scale Averaging in Space and Time: A Short Review.

Lohmann, G. M., & Monahan, A. H. (2017). Effects of temporal averaging on short-term irradiance variability under mixed sky conditions [Preprint]. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-2017-309

Lohmann, G. M., & Monahan, A. H. (2018). Effects of temporal averaging on short-term irradiance variability under mixed sky conditions. Atmospheric Measurement Techniques, 11(5), 3131–3144. https://doi.org/10.5194/amt-11-3131-2018

Lohmann, G. M., Monahan, A. H., & Heinemann, D. (2016). Local short-term variability in solar irradiance.

Lorenzo, A. T. (2017). Short-term irradiance forecasting using an irradiance monitoring network, satellite imagery, and data assimilation.

Lozano, I. L., Sánchez-Hernández, G., Guerrero-Rascado, J. L., Alados, I., & Foyo-Moreno, I. (2022). Analysis of cloud effects on long-term global and diffuse photosynthetically active radiation at a Mediterranean site. Atmospheric Research, 268, 106010. https://doi.org/10.1016/j.atmosres.2021.106010

Lucaciu, S., Blaga, R., Stefu, N., & Paulescu, M. (2016). Quantification of the Solar Radiative Regime Variability Based on the Clearness Index. Annals of West University of Timisoara - Physics, 59(1), 13–17. https://doi.org/10.1515/awutp-2016-0003

Marcos, J., Marroyo, L., Lorenzo, E., Alvira, D., & Izco, E. (2011). Power output fluctuations in large scale pv plants: One year observations with one second resolution and a derived analytic model: Power Output Fluctuations in Large Scale PV plants. Progress in Photovoltaics: Research and Applications, 19(2), 218–227. https://doi.org/10.1002/pip.1016

Mazumdar, B. M., Saquib, Mohd., & Das, A. K. (2014). An empirical model for ramp analysis of utility-scale solar PV power. Solar Energy, 107, 44–49. https://doi.org/10.1016/j.solener.2014.05.027

Miller, S. D., Rogers, M. A., Haynes, J. M., Sengupta, M., & Heidinger, A. K. (2018). Short-term solar irradiance forecasting via satellite/model coupling. Solar Energy, 168, 102–117. https://doi.org/10.1016/j.solener.2017.11.049

Mills, A. (2011). Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

Mol, W. B., van Stratum, B. J. H., Knap, W. H., & van Heerwaarden, C. C. (2023). Reconciling Observations of Solar Irradiance Variability With Cloud Size Distributions. Journal of Geophysical Research: Atmospheres, 128(5), e2022JD037894. https://doi.org/10.1029/2022JD037894

Monjoly, S., André, M., Calif, R., & Soubdhan, T. (2019). Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model. Energies, 12(12), 2264. https://doi.org/10.3390/en12122264

Mucomole, F. V., Silva, C. A. S., & Magaia, L. L. (2023). Temporal Variability of Solar Energy Availability in the Conditions of the Southern Region of Mozambique. American Journal of Energy and Natural Resources, 2(1), Article 1. https://doi.org/10.54536/ajenr.v2i1.1311

Nam, S., & Hur, J. (2019). A hybrid spatio-temporal forecasting of solar generating resources for grid integration. Energy, 177, 503–510. https://doi.org/10.1016/j.energy.2019.04.127

Neggers, R. A. J., Jonker, H. J. J., & Siebesma, A. P. (2003). Size Statistics of Cumulus Cloud Populations in Large-Eddy Simulations. Journal of the Atmospheric Sciences, 60(8), 1060–1074. https://doi.org/10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2

Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, Parts A/B/C, 130, 103389. https://doi.org/10.1016/j.pce.2023.103389

Nwokolo, S. C., Obiwulu, A. U., Ogbulezie, J. C., & Amadi, S. O. (2022). Hybridization of statistical machine learning and numerical models for improving beam, diffuse and global solar radiation prediction. Cleaner Engineering and Technology, 9, 100529. https://doi.org/10.1016/j.clet.2022.100529

Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2022). Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon, 8(6), e09598. https://doi.org/10.1016/j.heliyon.2022.e09598

Ohtake, H., Shimose, K., Fonseca, J. G. D. S., Takashima, T., Oozeki, T., & Yamada, Y. (2013). Accuracy of the solar irradiance forecasts of the Japan Meteorological Agency mesoscale model for the Kanto region, Japan. Solar Energy, 98, 138–152. https://doi.org/10.1016/j.solener.2012.10.007

Perez, M. J. R., & Fthenakis, V. M. (2015). On the spatial decorrelation of stochastic solar resource variability at long timescales. Solar Energy, 117, 46–58. https://doi.org/10.1016/j.solener.2015.04.020

Perez, R., David, M., Hoff, T. E., Jamaly, M., Kivalov, S., Kleissl, J., Lauret, P., & Perez, M. (2016). Spatial and Temporal Variability of Solar Energy. Foundations and Trends® in Renewable Energy, 1(1), 1–44. https://doi.org/10.1561/2700000006

Perez, R., Kivalov, S., Schlemmer, J., Hemker, K., & Hoff, T. E. (2012). Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance. Solar Energy, 86(8), 2170–2176. https://doi.org/10.1016/j.solener.2012.02.027

Perez, R., Lauret, P., Perez, M., David, M., Hoff, T. E., & Kivalov, S. (2018). Solar Resource Variability. In R. Perez (Ed.), Wind Field and Solar Radiation Characterization and Forecasting: A Numerical Approach for Complex Terrain (pp. 149–170). Springer International Publishing. https://doi.org/10.1007/978-3-319-76876-2_7

Perez, R., Rábago, K. R., Trahan, M., Rawlings, L., Norris, B., Hoff, T., Putnam, M., & Perez, M. (2016). Achieving very high PV penetration – The need for an effective electricity remuneration framework and a central role for grid operators. Energy Policy, 96, 27–35. https://doi.org/10.1016/j.enpol.2016.05.016

Perpiñán, O., & Lorenzo, E. (2011). Analysis and synthesis of the variability of irradiance and PV power time series with the wavelet transform. Solar Energy, 85(1), 188–197. https://doi.org/10.1016/j.solener.2010.08.013

Rapti, A. S. (2000). Atmospheric transparency, atmospheric turbidity and climatic parameters. Solar Energy, 69(2), 99–111. https://doi.org/10.1016/S0038-092X(00)00053-0

Roversi, K., & Rampinelli, G. A. (2020). Análise do fator de dimensionamento do inversor em um sistema fotovoltaico conectado à rede.

Salmanoğlu, F., & Çeti̇N, N. S. (2022). An Approach on Developing a Dynamic Wind-Solar Map for Tracking Electricity Production Potential and Energy Harvest. Gazi University Journal of Science Part A: Engineering and Innovation, 62–78. https://doi.org/10.54287/gujsa.1085005

International Energy Agency (IEA), International Renewable Energy Agency (IRENA), United Nations Statistics Division (UNSD), World Bank, & World Health Organization (WHO). (2023). Tracking SDG 7: The energy progress report. World Bank. https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-health/sdg7-report2023-full-report_web.pdf?sfvrsn=669e8626_3&download=true

Sengupta, M., Kurtz, S., Dobos, A., Wilbert, S., Lorenz, E., Renné, D., Myers, D., Wilcox, S., Blanc, P., & Perez, R. (2015). Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications. IEA Solar Heating and Cooling Programme. https://doi.org/10.18777/ieashc-task46-2015-0001

Sha, A., & Aiello, M. (2018). Topological Considerations on Decentralised Energy Exchange in the Smart Grid. Procedia Computer Science, 130, 720–727. https://doi.org/10.1016/j.procs.2018.04.126

Sha, A., & Aiello, M. (2020). Topological considerations on peer-to-peer energy exchange and distributed energy generation in the smart grid. Energy Informatics, 3(1), 8. https://doi.org/10.1186/s42162-020-00109-5

Shakirov, V. (2019). An analysis of wind and solar power variability to assess its implications for power grid. EPJ Web of Conferences, 217, 01019. https://doi.org/10.1051/epjconf/201921701019

Shen, P., Zhao, S., Ma, Y., & Liu, S. (2023). Urbanization-induced Earth’s surface energy alteration and warming: A global spatiotemporal analysis. Remote Sensing of Environment, 284, 113361. https://doi.org/10.1016/j.rse.2022.113361

Energypedia. (2023). Situação de acesso à energia em Moçambique. Retrieved December 7, 2023, from https://energypedia.info/wiki/Situa%C3%A7%C3%A3o_de_Acesso_%C3%A0_Energia_em_Mo%C3%A7ambique

Sørensen, M. L., Nystrup, P., Bjerregård, M. B., Møller, J. K., Bacher, P., & Madsen, H. (2023). Recent developments in multivariate wind and solar power forecasting. WIREs Energy and Environment, 12(2), e465. https://doi.org/10.1002/wene.465

Stetz, T., Von Appen, J., Niedermeyer, F., Scheibner, G., Sikora, R., & Braun, M. (2015). Twilight of the Grids: The Impact of Distributed Solar on Germany?s Energy Transition. IEEE Power and Energy Magazine, 13(2), 50–61. https://doi.org/10.1109/MPE.2014.2379971

Suri, M., Huld, T., Dunlop, E., Albuisson, M., Lefèvre, M., & Wald, L. (2007). Uncertainties in solar electricity yield prediction from fluctuation of solar radiation.

Tapia, M., Heinemann, D., Ballari, D., & Zondervan, E. (2022). Spatio-temporal characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and complementarity of global horizontal irradiance in Ecuador. Renewable Energy, 189, 1176–1193. https://doi.org/10.1016/j.renene.2022.03.049

Tovar, J., Olmo, F. J., Batlles, F. J., & Alados-Arboledas, L. (2001). Dependence of one-minute global irradiance probability density distributions on hourly irradiation. Energy, 26(7), 659–668. https://doi.org/10.1016/S0360-5442(01)00024-X

Uti, M. N., Md Din, A. H., Yusof, N., & Yaakob, O. (2023). A spatial-temporal clustering for low ocean renewable energy resources using K-means clustering. Renewable Energy, 219, 119549. https://doi.org/10.1016/j.renene.2023.119549

Van Haaren, R., Morjaria, M., & Fthenakis, V. (2014). Empirical assessment of short-term variability from utility-scale solar PV plants: Assessment of variability from utility-scale solar PV plants. Progress in Photovoltaics: Research and Applications, 22(5), 548–559. https://doi.org/10.1002/pip.2302

Verbois, H., Saint-Drenan, Y.-M., Libois, Q., Michel, Y., Cassas, M., Dubus, L., & Blanc, P. (2023). Improvement of satellite-derived surface solar irradiance estimations using spatio-temporal extrapolation with statistical learning. Solar Energy, 258, 175–193. https://doi.org/10.1016/j.solener.2023.04.037

Vijayakumar, G. (2004). Assessment of Solar Radiation Data Used In Analyses of Solar Energy Systems.

Vindel, J. M., Valenzuela, R. X., Navarro, A. A., & Polo, J. (2020). Temporal and spatial variability analysis of the solar radiation in a region affected by the intertropical convergence zone. Meteorological Applications, 27(1), e1824. https://doi.org/10.1002/met.1824

Wilcox, S., Blvd, C., Gueymard, C. A., & Box, P. O. (2016). Spatial and temporal variability of the solar resource in the United States

Wilson, P., & Tanaka, O. K. (2018). Estatística: Conceitos básicos [Basic concepts]. Retrieved April 10, 2023, from https://www.estantevirtual.com.br/livros/wilson-pereira-oswaldo-k-tanaka/estatistica-conceitos-basicos/189548989

Wu, J., Niu, Z., Li, X., Huang, L., Nielsen, P. S., & Liu, X. (2023). Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach. Energy, 263, 125939. https://doi.org/10.1016/j.energy.2022.125939

Xia, Y., Xu, Q., Fang, J., & Li, F. (2023). Non-iterative decentralized peer-to-peer market clearing in multi-microgrid systems via model substitution and network reduction. IEEE Transactions on Power Systems. Advance online publication. https://doi.org/10.1109/TPWRS.2023.3301447

Xu, Y., Dong, Z., & Wu, Y. (2023). The spatiotemporal effects of environmental regulation on green innovation: Evidence from Chinese cities. Science of The Total Environment, 876, 162790. https://doi.org/10.1016/j.scitotenv.2023.162790

Yan, M., Shahidehpour, M., Paaso, A., Zhang, L., Alabdulwahab, A., & Abusorrah, A. (2020). Distribution network-constrained optimization of peer-to-peer transactive energy trading among multi-microgrids. IEEE Transactions on Smart Grid. Advance online publication. https://doi.org/10.1109/TSG.2020.3032889

Yang, C., & Xie, L. (2012). A novel ARX-based multi-scale spatio-temporal solar power forecast model. 2012 North American Power Symposium (NAPS), 1–6. https://doi.org/10.1109/NAPS.2012.6336383

Yang, D., Dong, Z., Lim, L. H. I., & Liu, L. (2017). Analyzing big time series data in solar engineering using features and PCA. Solar Energy, 153, 317–328. https://doi.org/10.1016/j.solener.2017.05.072

Yu, B., Liu, H., Wu, J., & Lin, W.-M. (2009). Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: A case study of downtown Houston. International Journal of Remote Sensing, 30(17), 4359–4385. https://doi.org/10.1080/01431160802555846

Yu, L., Zhang, M., Wang, L., Lu, Y., & Li, J. (2021). Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China. Atmospheric Research, 248, 105162. https://doi.org/10.1016/j.atmosres.2020.105162

Zervos, A., & Lins, C. (2016). Renewables 2016 Global Status Report. REN21.

Zhang, S., & Yan, Y. (2022). Thermal performance of latent heat energy storage system with/without enhancement under solar fluctuation for Organic Rankine power cycle. Energy Conversion and Management, 270, 116276. https://doi.org/10.1016/j.enconman.2022.116276

Zhang, Y., Shen, Y., Xia, X., & Shi, G. (2018). Validation of GFS day-ahead solar irradiance forecasts in China.

Zheng, J., Du, J., Wang, B., Klemeš, J. J., Liao, Q., & Liang, Y. (2023). A hybrid framework for forecasting power generation of multiple renewable energy sources. Renewable and Sustainable Energy Reviews, 172, 113046. https://doi.org/10.1016/j.rser.2022.113046

Zhou, X., Huang, Z., Scheuer, B., Lu, W., Zhou, G., & Liu, Y. (2023). High-resolution spatial assessment of the zero energy potential of buildings with photovoltaic systems at the city level. Sustainable Cities and Society, 93, 104526. https://doi.org/10.1016/j.scs.2023.104526

Zhou, Y., Meng, X., Belle, J. H., Zhang, H., Kennedy, C., Al-Hamdan, M. Z., Wang, J., & Liu, Y. (2019). Compilation and spatio-temporal analysis of publicly available total solar and UV irradiance data in the contiguous United States. Environmental Pollution, 253, 130–140. https://doi.org/10.1016/j.envpol.2019.06.074

Zhu, W., Wu, B., Yan, N., Ma, Z., Wang, L., Liu, W., Xing, Q., & Xu, J. (2019). Estimating Sunshine Duration Using Hourly Total Cloud Amount Data from a Geostationary Meteorological Satellite. Atmosphere, 11(1), 26. https://doi.org/10.3390/atmos11010026

Downloads

Published

2024-09-05

How to Cite

Mucomole, F. V., Silva, C. A. S., & Magaia, L. L. (2024). A Systematic Review on the Accessibility of Spatial and Temporal Variability of Solar Energy Availability on a Short Scale Measurement. American Journal of Energy and Natural Resources, 3(1), 60–85. https://doi.org/10.54536/ajenr.v3i1.2430