Predicting the Spread of Infectious Diseases: A Time Series Approach Using Historical Case Data and Mobility Patterns
Keywords:
COVID-19, Forecasting Models, Infectious Diseases, Mobility Data, Public Health, Time Series AnalysisAbstract
This paper explores the use of time series analysis to predict the spread of infectious diseases, particularly focusing on COVID-19. A detailed methodology that combines historical case data with mobility patterns to boost the accuracy of our forecasts is proposed. In this study, a close look at different time series models, such as Auto Regressive Integrated Moving Average (ARIMA), Seasonal Auto Regressive Integrated Moving Average (SARIMA), and various machine learning techniques, to estimate daily case numbers was taken. Evaluation of the effectiveness of mobility data from multiple sources to see how it influences disease transmission was also considered. Our findings reveal that factoring in mobility patterns significantly improves prediction accuracy compared to models that rely only on historical case data. Notably, the ensemble method that merges SARIMA and Long Short – Term Memory (LSTM) models achieved the lowest prediction error Root Mean Square Error (RMSE) = 156.3 and Mean Absolute Error (MAE) = 112.7 when tested over a 14-day forecast period. These results indicate that human mobility is a key indicator of disease spread and can offer valuable insights for early intervention strategies. This research carries significant implications for public health policy, providing a framework to better anticipate disease outbreaks and optimize resource allocation during emerging infectious disease crises.
References
Ajimatanrareje, G. A., Ekeh, C., Igwilo, S., & Osunkwo, C. (2025). The current landscape of AI application in healthcare: A review. American Journal of Innovative Science and Engineering, 4(2), 1–16. https://doi.org/10.54536/ajise.v4i2.4432
Aleta, A., Martín-Corral, D., Pastore y Piontti, A., Ajelli, M., Litvinova, M., Chinazzi, M., & Moreno, Y. (2020). Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 4(9), 964–971. https://doi.org/10.1101/2020.05.06.20092841
Badr, H. S., Du, H., Marshall, M., Dong, E., Squire, M. M., & Gardner, L. M. (2020). Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. The Lancet Infectious Diseases, 20(11), 1247–1254. https://doi.org/10.1016/S1473-3099(20)30287-5
Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 29, Article 105340. https://doi.org/10.1016/j.dib.2020.105340
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. John Wiley & Sons. https://doi.org/10.1111/jtsa.12194
Castro, M. C., Chambers, T., Shukla, M., & Singer, B. (2020). Heterogeneity in uncertainty metrics for COVID-19 forecasting in the United States. Science Advances, 6(50), Article eabc4951. https://doi.org/10.1126/sciadv.abc4951
Chimmula, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals, 135, Article 109864. https://doi.org/10.1016/j.chaos.2020.109864
Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., & Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395–400. https://doi.org/10.1126/science.aba9757
Cliff, A. D., Haggett, P., & Smallman-Raynor, M. (2004). World atlas of epidemic diseases. Arnold. https://doi.org/10.1201/b13526
Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30119-5
Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L. C., van Elsland, S., . . . Ghani, A. C. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team. https://doi.org/10.25561/77482
Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., & Colaneri, M. (2020). Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, 26(6), 855–860. https://doi.org/10.1038/s41591-020-0883-7
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-84858-7
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Ioannidis, J. P., Cripps, S., & Tanner, M. A. (2022). Forecasting for COVID-19 has failed. International Journal of Forecasting, 38(2), 423–438. https://doi.org/10.1016/j.ijforecast.2020.08.004
Kraemer, M. U., Yang, C. H., Gutierrez, B., Wu, C. H., Klein, B., Pigott, D. M., Open COVID-19 Data Working Group, Plessis, L. du, Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., & Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493–497. https://doi.org/10.1126/science.abb4218
Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R. M., Sun, F., Jit, M., Munday, J. D., Davies, N., Gimma, A., van Zandvoort, K., Gibbs, H., Hellewell, J., Jarvis, C. I., Clifford, S., Quilty, B. J., Bosse, N. I., . . . Flasche, S. (2020). Early dynamics of transmission and control of COVID-19: A mathematical modelling study. The Lancet Infectious Diseases, 20(5), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4
Linka, K., Peirlinck, M., & Kuhl, E. (2020). The reproduction number of COVID-19 and its correlation with public health interventions. Computational Mechanics, 66(4), 1035–1050. https://doi.org/10.1007/s00466-020-01880-8
Petropoulos, F., & Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19. PLoS ONE, 15(3), Article e0231236. https://doi.org/10.1371/journal.pone.0231236
Ramchandani, A., Fan, C., & Mostafavi, A. (2020). DeepCOVIDNet: An interpretable deep learning model for predictive surveillance of COVID-19 using heterogeneous features and their interactions. IEEE Access, 8, 159915–159930. https://doi.org/10.48550/arXiv.2008.00115
Shahid, F., Zameer, A., & Muneeb, M. (2020). Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos, Solitons & Fractals, 140, Article 110212. https://doi.org/10.1016/j.chaos.2020.110212
Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: With R examples (4th ed.). Springer. https://doi.org/10.1007/978-1-4419-7865-3
Tatem, A. J., Rogers, D. J., & Hay, S. I. (2006). Global transport networks and infectious disease spread. Advances in Parasitology, 62, 293–343. https://doi.org/10.1016/S0065-308X(05)62009-X
Tulla, H. B., Mahbub, M., Rhaman, N. M., Midul, M., & Sany, R. (2025). Leveraging machine learning for IoT traffic analysis: Enhancing privacy and detecting malicious behavior. American Journal of Smart Technology and Solutions, 4(2), 31–40. https://doi.org/10.54536/ajise.v4i2.4439
Unkel, S., Farrington, C. P., Garthwaite, P. H., Robertson, C., & Andrews, N. (2012). Statistical methods for the prospective detection of infectious disease outbreaks: A review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 175(1), 49–82. https://doi.org/10.1111/j.1467-985X.2011.00714.x
Zhang, X., Zhang, T., Young, A. A., & Li, X. (2014). Applications and comparisons of four time series models in epidemiological surveillance data. PLoS ONE, 9(2), Article e88075. https://doi.org/10.1371/journal.pone.0088075
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Howard C. C., Nnoka L. C.

This work is licensed under a Creative Commons Attribution 4.0 International License.