Timber Volume and Aboveground Carbon Sequestration of Rubber-Tree (Hevea Brasiliensis, Muell. Arg.) Plantations in Edo-South Rainforest Ecosystem, Nigeria

Authors

  • Samuel Oloruntoba Gavin Institute of Biodiversity, Climate Change and Watershed; Niger Delta University, Wilberforce Island, Nigeria
  • Oyedeji Ayodele A. Institute of Biodiversity, Climate Change and Watershed; Niger Delta University, Wilberforce Island, Nigeria
  • Ezenwaka Jasper Institute of Biodiversity, Climate Change and Watershed; Niger Delta University, Wilberforce Island, Nigeria

Keywords:

Carbon-Sequestration, Climate-Change, Rubber-Trees, Timber-Stem Volume

Abstract

Capturing carbon-dioxide (CO2) from the atmosphere and storing it in forest/agroforest ecosystems via phototropic carbon sequestration is a strategy that has been prioritized for reducing atmospheric CO2 concentration to mitigate the global warming problem. The objective of this study was to evaluate carbon sequestration potential of rubber-tree plantations. Plantations of different age levels: 4, 6, 14, 18 and 25 years were selected for sampling. From each plantation, one-hectare area was sub-divided into 25 quadrants (20 x 20 m2) as temporary sampling plots, while 4 quadrants were randomly selected as permanent sampling plots where we measured girth-DBH of all individual trees; and total heights; diameters at base, middle and top of two mean trees. From a reference natural forest, a one-hectare area was subdivided into ten (50 x 20 m2) quadrants, while 4 quadrants were randomly selected as permanent sample plots for measurements of heights and girth/DBH of individual trees. Results showed that bole volume ranged from 9.4 to 385.9 m3/ha in the plantations between age 4 and 25 years. Species-specific mean biomass expansion factor (BEF) value of 2.8 was obtained in our estimation, indicating that BEF of rubber trees decreases with increasing girth/DBH. Aboveground carbon sequestration of the 25-year-old rubber plantation was 175.7 Mg C ha-1. As at the time of this study, the 70 ha rubber trees that were examined had removed a total of 3.67 Giga-grams CO2 from the atmosphere. This was considered very significant in view of the fact that it is an ongoing ecosystem service of the plantations in helping to mitigate global warming induced largely by atmospheric CO2 pollution.

References

Adekunle, V. A. J. (2007). Non-linear regression models for timber volume estimation in natural forest ecosystem, South-west Nigeria. Research Journal of Forestry, 1(1), 40–54.

Adekunle, V. A. J. (2011). Yields and nutrient pools in soils with cultivated Tectona grandis and Gmelina arborea in Nigerian rainforest ecosystem. Journal of the Saudi Society of Agricultural Sciences, 10(2), 127–135.*

Balsiger, J., Bahdon, J., & Whiteman, A. (2000). The utilization, processing and demand for rubber-wood as a source of wood supply (Asia-Pacific Forestry Sector Outlook Study Working Paper Series No. 50). Food and Agriculture Organization of the United Nations. http://www.fao.org

Bohre, P., Chaubey, O., & Singhal, P. (2013). Biomass accumulation and carbon sequestration in Tectona grandis and Gmelina arborea Roxb. International Journal of Bio-Science and Bio-Technology, 5(3), 153–174.

Brack, C. (2009). Standard point on tree bole for measurement. Forest Measurement and Modeling.

Brahma, B., Nath, A. J., & Das, A. K. (2016). Managing rubber plantations for advancing climate change strategy. Current Science, 110(10), 2015–2019.

Brown, S., & Lugo, A. E. (1992). Aboveground biomass estimates for tropical moist forest of the Brazilian Amazon. Interciencia, 17(8), 8–18.

Brown, S., Gillespie, A. J., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881–902.

Brown, S. (1997). Estimating biomass and biomass change of tropical forests. FAO Forestry Paper No. 134. Food and Agriculture Organization of the United Nations.

Chave, J., Riera, B., & Dubois, M. A. (2001). Estimation of biomass in a neotropical forest of French Guiana: Spatial and temporal variability. Journal of Tropical Ecology, 17, 79–96.

Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J. C. Eamus, D., et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forest. Oecologia, 144(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x

Chukwuemeka, O. (2016). Wood density of rubber (Hevea brasiliensis) grown in south-eastern Nigeria for utilization purposes. Society of Engineering, 4, 40–45.

Condit, R. (2008). Methods for estimating above-ground biomass of forest and replacement vegetation in the tropics. Center for Tropical Forest Science Research Manual, 46 pp. http://ctfs.arnarb.harvard.edu/Public/pdfs/CarbonInventoryMethods.pdf

Djomo, A. N., Picard, N., Fayolle, A., Henry, M., Ngomanda, A., Ploton, P., McLellan, J., Saborowski, J., Adamou, I., & Lejeune, P. (2016). Tree allometry for estimation of carbon stocks in African tropical forests. Forestry, 89(4), 446–455. https://doi.org/10.1093/forestry/cpw025

Fang, J. Y., & Wang, Z. M. (2001). Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecological Research, 16(4), 587–592.

Food and Agriculture Organization of the United Nations. (1997). FAO forestry paper 134. Food and Agriculture Organization of the United Nations. ISBN 92-5-103955-0

Food and Agriculture Organization of the United Nations. (2000). The utilization, processing and demand for rubberwood as a source of wood supply. http://www.fao.org/docrep/003/y0153e/y0153e00.htm

Food and Agriculture Organization of the United Nations. (2007). State of the world’s forests. FAO.

Fearnside, P. M., & Laurance, W. F. (2003). Comment on “Determination of deforestation rates of the world’s humid tropical forests.” Science, 299(5609), 1015a.

Feldpausch, T. R., Banin, J., Phillips, O. L., Baker, T. R., & Lewis, S. L. (2011). Height–diameter allometry of tropical trees. Biogeosciences, 8(5), 1081–1106. https://doi.org/10.5194/bg-8-1081-2011

Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 045023.

Gonçalves, P. de S., Teixeira de Moraes, M. L., Bortoletto, N., da Costa, R. B., & Pifer Gonçalves, E. C. (2005). Genetic variation in growth traits and yield of rubber trees (Hevea brasiliensis) growing in the Brazilian state of São Paulo. Genetics and Molecular Biology, 28(4), 765–772. https://doi.org/10.1590/S1415-47572005000500019

Gonçalves, P. S., Scaloppi Júnior, E. J., Martins, M. A., Moreno, R. M. B., Branco, R. B. F., & Gonçalves, E. C. P. (2011). Assessment of growth and yield performance of rubber tree clones of the IAC 500 series. Pesquisa Agropecuária Brasileira, 46(12), 1641–1647. https://doi.org/10.1590/S0100-204X2011001200009

González-García, M., Hevia, A., & Majada, J. (2013). Above-ground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens in northwest Spain. Biomass and Bioenergy, 54, 147–157.

Goslee, K., Brown, S., Walker, S., Murray, L., & Tepe, T. (2015). Consulting study 3: Review of aboveground biomass estimation techniques (31 pp.). Winrock International. https://www.winrock.org/wp-content/uploads/2015/12/hcs-consultingreport-3-review-ofaboveground-biomassestimation-techniques.pdf

Gower, S. T., Vogel, J. G., Norman, J. M., Kucharik, C. J., Steele, S. J., & Stow, T. K. (1997). Carbon distribution and above-ground net primary production in aspen, jack, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research: Atmospheres, 102(D24), 29029–29041. https://doi.org/10.1029/97JD01371

Hairiah, K., Sitompul, S. M., van Noordwijk, M., & Palm, C. (2001). Methods for sampling carbon stocks above and below ground (p. 4). International Centre for Research in Agroforestry, Southeast Asian Regional Research Programme. http://www.icraf.cgiar.org/sea

Hossain, M., Saha, K., Siddique, M. R. H., Abdullah, S. M. R., Islam, S. M. Z., Mondol, F. K., Iqbal, M. Z., Akhter, M., & Henry, M. (2021). Development of allometric biomass models for Hevea brasiliensis Mull. Arg. plantation of Bangladesh: A non-destructive approach. Indian Forester, 147(4), 366–373. https://doi.org/10.36808/if/2021/v147i4/152964

Houghton, J. T., Meira Filho, L. G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D. J., & Callender, B. A. (1997). IPCC guidelines for national greenhouse gas inventories – Workbook (Vol. 2). IPCC-NGGIP/OECD/IEA. http://www.ipcc-nggip.iges.or.jp/public/gl/invs5.html

Husch, B., Miller, C. I., & Beers, T. W. (2003). Forest mensuration (3rd ed., p. 402). Wiley and Sons. http://www.informationbible.com/article-natural-rubber-producing-countries

Intergovernmental Panel on Climate Change (IPCC). (2000). Third assessment report: Climate 2001 (TAR) (p. 308). https://unfccc.int/third-assessment-report-of-the-intergovernmental-panel-on-climate-change

Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC guidelines for national greenhouse gas inventories. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories

Intergovernmental Panel on Climate Change (IPCC). (2008). Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report (R. K. Pachauri & A. Reisinger, Eds.). Intergovernmental Panel on Climate Change. http://bit.ly/17pJfjj

Jeyasingham, J. (1974). Rubberwood is abundant and accessible: Will it ever be successfully exploited? Quarterly Journal of the Rubber Research Institute of Sri Lanka, 51, 13–15.

Keith, H., Mackey, B. G., & Lindenmayer, D. B. (2009). Reevaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, 106(28), 11635–11640. https://doi.org/10.1073/pnas.0901970106

Méndez, H., Amelia, C., Blago-Datskiy, S., Jintrawet, A., & Georg, C. G. (2012). Carbon sequestration of rubber (Hevea brasiliensis) plantations in the Naban River Watershed National Nature Reserve in Xishuangbanna, China. Conference on International Research on Food Security, Natural Resource Management and Rural Development, Göttingen. https://scispace.com/pdf/carbon-sequestration-of-rubber-hevea-brasiliensis-1ffq5ny6c6.pdf

Mohren, F., & Klein Goldewijkt, K. (1994). CO₂FIX model. Institute of Forestry and Nature Research. https://cgspace.cgiar.org/items/47169f2e-6a26-4874-9872-336b43a458cf

Mydin, K. K., John, A., Nazeer, M. A., Prem, E. E., Thomas, V., & Saraswathyamma, C. K. (2005). Promising Hevea brasiliensis clones evolved by ortet selection with emphasis on latex-timber traits and response to stimulation. Journal of Plantation Crops, 33, 18–28.

Naji, H. Z., Bakar, E. S., Soltani, M., Ebadi, S. E., Abdul-Hamid, H., Javad, S. K. S., & Sahri, M. H. (2014). Effect of initial planting density and tree features on growth, wood density, and anatomical properties from a Hevea brasiliensis trial plantation. Forest Products Journal, 64(1–2), 41–47. https://doi.org/10.13073/FPJ-D-13-00071

Návar, J. (2009a). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257, 427–434. https://doi.org/10.1016/j.foreco.2008.09.028

Návar-Cháidez, J. J. (2009). Allometric equations and expansion factors for tropical dry trees of eastern Sinaloa, Mexico. Tropical and Subtropical Agroecosystems, 10, 45–52.

Nigerian REDD+ RPP. (2013). Nigerian REDD+ Readiness Preparation Proposal (RPP). Federal Republic of Nigeria. https://www.forestcarbonpartnership.org/system/files/documents/Nigeria%20REDD%2B%20RPP%20November_2013%5B1%5D

Oke, O. S., Akindele, S. O., & Onyekwelu, J. C. (2020). Biomass and carbon stock assessment of a tropical rain forest ecosystem in Nigeria. Journal of Forestry Research and Management, 17(2), 83–92.

Onyekwelu, J. C., & Fuwape, J. A. (2008). Conservation and restoration of degraded forest landscapes in rainforest zones of Nigeria through reforestation projects. Forest and Forest Products Journal, 1(1), 29–39.

Pengprecha, N. (1976). The rubber tree in Thai wood using industries. XI World Congress in Oslo, Norway, June 20–July 2. https://www.itto.int/files/user/pdf/publications/PD%2051%2000/pd51-00-2%20rev2(I,M)%20e.pdf

Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems, and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30–50.

Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., & Wallace, D. W. R. (2001). The carbon cycle and atmospheric carbon dioxide. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Climate change 2001: The scientific basis (pp. 183–237). Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf

Reichle, D., Houghton, J., Kane, B., Ekmann, J., Benson, S., Clarke, J., Dahlman, R., Hendrey, G., Herzog, H., Hunter-Cevera, J., Jacobs, G., Judkins, R., Ogden, J., Palmisano, A., Socolow, R., Stringer, J., Sulres, T., Wolsky, A., Woodward, N., & Ypork, M. (1999). Carbon sequestration: State of the science. U.S. Department of Energy, Office of Science, and Office of Fossil Energy. https://digital.library.unt.edu/ark:/67531/metadc739790

Richardson, J., Bjorheden, R., Hakkila, P., Lowe, A. T., & Smith, C. T. (2002). Bioenergy from sustainable forestry: Guiding principles and practice (Vol. 71). Springer. https://doi.org/10.1007/0-306-47519-7_5

Saengruksawong, C., Khamyong, S., Anongrak, N., & Pinthong, J. (2012). Growths and carbon stocks of Pará rubber plantations on Phonpisai soil series in Northeastern Thailand. Rubber Thai Journal, 1(1), 1–18.

Sharp, D. D., Lieth, H., & Whigham, D. (1975). Assessment of regional productivity in North Carolina. In H. Lieth & R. H. Whittaker (Eds.), Primary productivity of the biosphere (pp. 131–146). Springer.

Sekhar, A. C. (1992). Technical properties and utilization. In M. R. Sethuraj & N. M. Mathew (Eds.), Natural rubber: Biology, cultivation and technology (pp. 542–560). Elsevier. https://www.sciencedirect.com/bookseries/developments-in-crop-science/vol/23/suppl/C

Teobaldelli, M., Somogyi, Z., & Migliavacca, M. (2009). Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management, 257(4), 1004–1013. https://doi.org/10.1016/j.foreco.2008.11.002

UNFCCC. (2006). Report of the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol on its first session, held at Montreal from 28 November to 10 December 2005 (FCCC/CMP/2005/8/Add.). https://unfccc.int/resource/docs/2005/cmp1/eng/08a01.pdf

Uzoma, C. N., & Akindele, S. O. (2011). Working plan for Gmelina arborea plantations in Oluwa Forest Reserve, Nigeria (pp. 1–15).

Waizah, Y., Uzu, F. O., Orimoloye, J. R., & Idoko, S. O. (2011). Effects of rubber effluent, urea and rock phosphate on soil properties and rubber seedlings in an acid sandy soil. African Journal of Agricultural Research, 6(16), 3733–3739.

Watson, R. T., Zinyowera, M. C., & Moss, R. H. (1996). Climate change impacts 1995: Impacts, adaptations and mitigation of climate change—Scientific-technical analyses. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_sar_wg_II_full_report.pdf

Yang, X., Blagodatsky, S., Liu, F., Beckschäfer, P., Xu, J., & Cadisch, G. (2017). Rubber tree allometry, biomass partitioning and carbon stocks in mountainous landscapes of subtropical China. Forest Ecology and Management, 404, 84–99. https://www.elsevier.com/locate/foreco

Zohuri, B., & McDaniel, P. (2021). Introduction to energy essentials: Insight into nuclear, renewable and non-renewable energies (pp. 321–370). https://doi.org/10.1016/B978-0-323-90152-9.00009-8

Downloads

Published

2025-11-21

How to Cite

Timber Volume and Aboveground Carbon Sequestration of Rubber-Tree (Hevea Brasiliensis, Muell. Arg.) Plantations in Edo-South Rainforest Ecosystem, Nigeria. (2025). International Journal of Forestry and Ecosystem, 1(1), 34-42. https://journals.e-palli.com/home/index.php/ijfe/article/view/5974