Metagenomic Profiling and Natural Product-Based Control of Antibiotic-Resistant Streptococcus Species in Gut Microbiome of Diarrhea-Associated Children

Authors

  • Hasan Mahfuz Reza Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0009-0005-8232-3149
  • Zinia Afrin Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Bangladesh https://orcid.org/0000-0002-7552-9692
  • Shovon Shaha Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0000-0003-1485-2776
  • Md. Monir Hossen Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0000-0001-9249-1000
  • Mahadi Hasan Sojol Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Nasrin Islam Moon Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0000-0002-5437-6914
  • Md Ashikuzzaman Antor Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0000-0001-6637-3975
  • Md. Shahedur Rahman Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Bangladesh
  • Arghya Prosun Sarkar Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Tonima Enam Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Nilufa Akhter Banu Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Mohammad Abu Hena Mostofa Jamal Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0000-0003-0542-4323

DOI:

https://doi.org/10.54536/ajmri.v4i4.5029

Keywords:

Antibiotic Resistance, Clove, Gut Bacteria, Metagenomic Analysis, Streptococcus sp

Abstract

The threat of antibiotic resistance extends beyond established pathogens. Recent research highlights the concerning role of normal gut bacteria in holding and potentially spreading antibiotic resistance genes. This phenomenon poses a significant risk to human and animal health worldwide. In this study, we aimed to understand the antibiotic resistance profile of gut bacteria and determine the abundance of bacteria at the species level based on metagenomic analysis and investigate control methods. Fecal samples were collected from 150 pediatric diarrhoea patients from Kushtia 250-bed General Hospital, Bangladesh and cultured in anaerobic conditions. The presence of antibiotic resistance was analyzed by the disk diffusion method, and the microbial profiling was plotted by metagenomic analysis. The abundant antibiotic-resistant strain was identified and controlled using natural compounds. Antibiotic-resistant bacteria against the tested 10 antibiotics were prevalent in 0-6-month old children samples and followed by 7-12-month-old children. In 25-30-month old children samples, bacteria were resistant against all the antibiotics except Doxycycline, and Levofloxacin. Based on metagenomic analysis Firmicutes is the most abundant phylum in antibiotic resistance samples. The presence of Streptococcus was observed only in antibiotic-resistant samples whereas Lactobacillus, Lysinibacillus, Vagococcus, Pseudomonas, Lentibacillus, and Corynebacterium have a higher tendency of susceptibility than resistance. Antibiotic-resistant Streptococcus was isolated on Streptococcus selection agar and controlled by aqueous extract of Cloves. Although human gut microbes perform various health benefits, multiple drug resistance among human gut bacteria will be a great threat to human health. Hence, alternative sources of antibiotics expanded the consciousness of using antibiotics as a treatment. Natural products can be used as therapeutic agents to control multiple drug-resistant bacteria.

Downloads

Download data is not yet available.

References

Abdel-Shafi, S., Al-Mohammadi, A., Hamdi, S., Moustafa, A. H., & Enan, G. (2019b). Biological Characterization and Inhibition of Streptococcus pyogenes ZUH1 Causing Chronic Cystitis by Crocus sativus Methanol Extract, Bee Honey Alone or in Combination with Antibiotics: An In Vitro Study. Molecules, 24(16), 2903. https://doi.org/10.3390/molecules24162903

Ahsan, G., Hossain, M. M. K., Alam, J., Alim, M. A., Ahmed, S., Hasib, R. A., Reza, A., Anzuman, M., Shaha, S., Rahman, M. S., & Jamal, M. a. H. M. (2024). Antibiotic Resistance Pattern of Lactobacillus reuteri, Lactobacillus salivarius, and Enterococcus hirae Isolated from Gastrointestinal and Respiratory Tract in Commercial Broiler Chickens. International Journal of Veterinary Medicine and Animal Science., 1(1), 56–63. https://doi.org/10.54536/ijvmas.v1i1.3517

Ajala, Y. D. (2023). The occurrence, molecular identification and antibiotics resistance pattern of faecal bacteria in public and private wells in Paiko, Niger State.

Akram, F., Imtiaz, M., & Haq, I. U. (2022). Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microbial Pathogenesis, 174, 105923. https://doi.org/10.1016/j.micpath.2022.105923

Band, V. I., & Weiss, D. S. (2019). Heteroresistance: A cause of unexplained antibiotic treatment failure? PLoS Pathogens, 15(6), e1007726. https://doi.org/10.1371/journal.ppat.1007726

Batubara, U. M., Mardalisa, M., Suparjo, S., Maritsa, H. U., Pujianto, E., & Herlini, M. (2021). Isolation and characterization of cellulolytic bacteria diversity in Peatland ecosystem and their cellulolytic activities. IOP Conference Series Earth and Environmental Science, 934(1), 012028. https://doi.org/10.1088/1755-1315/934/1/012028

Chamat-Hedemand, S., Dahl, A., Østergaard, L., Arpi, M., Fosbøl, E., Boel, J., Oestergaard, L. B., Lauridsen, T. K., Gislason, G., Torp-Pedersen, C., & Bruun, N. E. (2020). Prevalence of infective endocarditis in streptococcal bloodstream infections is dependent on streptococcal species. Circulation, 142(8), 720–730. https://doi.org/10.1161/circulationaha.120.046723

Nwobodo, D. C., Ugwu, M. C., Anie, C. O., Al‐Ouqaili, M. T. S., Ikem, J. C., Chigozie, U. V., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis, 36(9). https://doi.org/10.1002/jcla.24655

Church, D. L., Cerutti, L., Gürtler, A., Griener, T., Zelazny, A., & Emler, S. (2020). Performance and application of 16S RRNA gene cycle sequencing for routine identification of bacteria in the Clinical Microbiology Laboratory. Clinical Microbiology Reviews, 33(4). https://doi.org/10.1128/cmr.00053-19

Conrads, G., De Soet, J. J., Song, L., Henne, K., Sztajer, H., Wagner-Döbler, I., & Zeng, A. (2014). Comparing the cariogenic speciesStreptococcus sobrinusandS. mutanson whole genome level. Journal of Oral Microbiology, 6(1), 26189. https://doi.org/10.3402/jom.v6.26189

Cook, M. A., & Wright, G. D. (2022). The past, present, and future of antibiotics. Science Translational Medicine, 14(657). https://doi.org/10.1126/scitranslmed.abo7793

De, R., Mukhopadhyay, A. K., & Dutta, S. (2020). Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter. Gut Pathogens, 12(1). https://doi.org/10.1186/s13099-020-00371-8

Ducarmon, Q. R., Zwittink, R. D., Hornung, B. V. H., Van Schaik, W., Young, V. B., & Kuijper, E. J. (2019). Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/mmbr.00007-19

Elvers, K. T., Wilson, V. J., Hammond, A., Duncan, L., Huntley, A. L., Hay, A. D., & Van Der Werf, E. T. (2020). Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open, 10(9), e035677. https://doi.org/10.1136/bmjopen-2019-035677

Fukunaga, R., Asano, T., Matsui, R., Abe, M., Ishiwada, N., & Shima, Y. (2023). A case of bacteremia and meningitis in a neonate infected with Group B Streptococcus via breastfeeding who survived without neurological sequelae: A case report. Journal of Nippon Medical School, 91(5), 495–498. https://doi.org/10.1272/jnms.jnms.2024_91-501

Garg, N., Bhattacherjee, A. K., Shukla, P. K., & Singh, B. (2021). Influence of imidacloprid on bacterial community diversity of mango orchard soil assessed through 16S rRNA sequencing-based metagenomic analysis. Environmental Monitoring and Assessment, 193(2). https://doi.org/10.1007/s10661-021-08885-7

Gergova, R., Boyanov, V., Muhtarova, A., & Alexandrova, A. (2024). A review of the impact of streptococcal infections and antimicrobial resistance on human health. Antibiotics, 13(4), 360. https://doi.org/10.3390/antibiotics13040360

Geta, K. (2019). Factors, impacts and possible solutions of antibiotic resistance: Review article. World Scientific News, 138(2), 225–247.

Guo, X., Tang, N., Lei, H., Fang, Q., Liu, L., Zhou, Q., & Song, C. (2021). Metagenomic analysis of antibiotic resistance genes in untreated wastewater from three different hospitals. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.709051

Jeżak, K., & Kozajda, A. (2021). Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine—review. Environmental Science and Pollution Research, 29(7), 9533–9559. https://doi.org/10.1007/s11356-021-17773-z

Jin, Z., Li, J., Zhou, H., Wang, Z., Yi, L., Liu, N., Du, J., Chang, C., & Ji, W. (2022). Serotype Distribution, Virulence Determinants and Antimicrobial Susceptibility of Streptococcus agalactiae Isolated from Young Infants. Pathogens, 11(11), 1355. https://doi.org/10.3390/pathogens11111355

Kadhim, Z. M., Wannas, Z. H., & Ibrahim, H. K. (n.d.). An overview of the antimicrobial resistance: Classification, modes of action and mechanisms.

Kalbermatter, C., Trigo, N. F., Christensen, S., & Ganal-Vonarburg, S. C. (2021). Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.683022

Klassert, T. E., Zubiria-Barrera, C., Kankel, S., Stock, M., Neubert, R., Lorenzo-Diaz, F., Doehring, N., Driesch, D., Fischer, D., & Slevogt, H. (2020). Early bacterial colonization and antibiotic resistance gene acquisition in newborns. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00332

Kumar, M., Sarma, D. K., Shubham, S., Kumawat, M., Verma, V., Nina, P. B., Jp, D., Kumar, S., Singh, B., & Tiwari, R. R. (2021). Futuristic Non-antibiotic Therapies to Combat antibiotic Resistance: a review. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.609459

Kumari, H., Kumar, K., Kumar, G., & Sharma, N. J. J. o. P. N. R. (2022). Acute Gastroenteritis: Its Causes, Maintenance, And Treatment. Journal of Pharmaceutical Negative Results, 5064-5078. http://dx.doi.org/10.47750/pnr.2022.13.S08.666

Lamberte, L. E., & Van Schaik, W. (2022). Antibiotic resistance in the commensal human gut microbiota. Current Opinion in Microbiology, 68, 102150. https://doi.org/10.1016/j.mib.2022.102150

Loftus, M., Hassouneh, S. A., & Yooseph, S. (2021). Bacterial associations in the healthy human gut microbiome across populations. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-82449-0

Maeusli, M., Lee, B., Miller, S., Reyna, Z., Lu, P., Yan, J., Ulhaq, A., Skandalis, N., Spellberg, B., & Luna, B. (2020). Horizontal Gene Transfer of Antibiotic Resistance from Acinetobacter baylyi to Escherichia coli on Lettuce and Subsequent Antibiotic Resistance Transmission to the Gut Microbiome. mSphere, 5(3). https://doi.org/10.1128/msphere.00329-20

Mahbub, N. U., Islam, M. M., Hong, S., & Chung, H. (2024). Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Frontiers in Cellular and Infection Microbiology, 14. https://doi.org/10.3389/fcimb.2024.1348279

Manaf, W., Dileep, N., Manaf, H., Dileep, N., & Liyakath, A. (2025). The Gut-Brain Connection: Investigating the Correlation between Autism Disorder and Gut Bacterium. American Journal of Medical Science and Innovation, 4(1), 24-34. https://doi.org/10.54536/ajmsi.v4i1.3818

Manetu, W. M., M’masi, S., & Recha, C. W. (2021). Diarrhea Disease among Children under 5 Years of Age: A Global Systematic Review. Open Journal of Epidemiology, 11(03), 207–221. https://doi.org/10.4236/ojepi.2021.113018

Matok, L. A., Azrad, M., Leshem, T., Abuzahya, A., Khamaisi, T., Smolkin, T., & Peretz, A. (2021). Mother-to-Neonate transmission of Antibiotic-Resistant Bacteria: A Cross-Sectional Study. Microorganisms, 9(6), 1245. https://doi.org/10.3390/microorganisms9061245

McInnes, R. S., McCallum, G. E., Lamberte, L. E., & Van Schaik, W. (2020). Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Current Opinion in Microbiology, 53, 35–43. https://doi.org/10.1016/j.mib.2020.02.002

Morowitz, M. J., Katheria, A. C., Polin, R. A., Pace, E., Huang, D. T., Chang, C. H., & Yabes, J. G. (2022). The NICU Antibiotics and Outcomes (NANO) trial: a randomized multicenter clinical trial assessing empiric antibiotics and clinical outcomes in newborn preterm infants. Trials, 23(1). https://doi.org/10.1186/s13063-022-06352-3

Murugaiyan, J., Kumar, P. A., Rao, G. S., Iskandar, K., Hawser, S., Hays, J. P., Mohsen, Y., Adukkadukkam, S., Awuah, W. A., Jose, R. a. M., Sylvia, N., Nansubuga, E. P., Tilocca, B., Roncada, P., Roson-Calero, N., Moreno-Morales, J., Amin, R., Kumar, B. K., Kumar, A., . . . Van Dongen, M. B. M. (2022). Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics, 11(2), 200. https://doi.org/10.3390/antibiotics11020200

Muteeb, G., Rehman, M. T., Shahwan, M., & Aatif, M. (2023). Origin of Antibiotics and antibiotic resistance, and their Impacts on Drug Development: A Narrative review. Pharmaceuticals, 16(11), 1615. https://doi.org/10.3390/ph16111615

Pärnänen, K. M., Hultman, J., Markkanen, M., Satokari, R., Rautava, S., Lamendella, R., Wright, J., McLimans, C. J., Kelleher, S. L., & Virta, M. P. (2021). Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. American Journal of Clinical Nutrition, 115(2), 407–421. https://doi.org/10.1093/ajcn/nqab353

Peterson, D., Bonham, K. S., Rowland, S., Pattanayak, C. W., & Klepac-Ceraj, V. (2021). Comparative analysis of 16S RRNA gene and metagenome sequencing in pediatric gut microbiomes. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.670336

Pinatih, K. J. P., Suardana, I. W., Sukrama, I. D. M., Swacita, I. B. N., & Putri, R. K. (2022). Biochemical and molecular identification of Gram-positive isolates with β-hemolysis activity isolated from the nasal swab of pigs during the human meningitis outbreak in Badung Regency, Bali-Indonesia. Veterinary World, 140–146. https://doi.org/10.14202/vetworld.2022.140-146

Rahman, M. M., Tumpa, M. a. A., Zehravi, M., Sarker, M. T., Yamin, M., Islam, M. R., Harun-Or-Rashid, M., Ahmed, M., Ramproshad, S., Mondal, B., Dey, A., Damiri, F., Berrada, M., Rahman, M. H., & Cavalu, S. (2022). An overview of antimicrobial stewardship optimization: The use of antibiotics in humans and animals to prevent resistance. Antibiotics, 11(5), 667. https://doi.org/10.3390/antibiotics11050667

Ramirez, J., Guarner, F., Fernandez, L. B., Maruy, A., Sdepanian, V. L., & Cohen, H. (2020). Antibiotics as major disruptors of gut microbiota. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.572912

Rhee, C., Aol, G., Ouma, A., Audi, A., Muema, S., Auko, J., Omore, R., Odongo, G., Wiegand, R. E., Montgomery, J. M., Widdowson, M., O’Reilly, C. E., Bigogo, G., & Verani, J. R. (2019). Inappropriate use of antibiotics for childhood diarrhea case management — Kenya, 2009–2016. BMC Public Health, 19(S3). https://doi.org/10.1186/s12889-019-6771-8

Ribeiro, C. F. A., De Oliveira Silva Silveira, G. G., De Souza Cândido, E., Cardoso, M. H., Carvalho, C. M. E., & Franco, O. L. (2020). Effects of antibiotic treatment on gut microbiota and how to overcome its negative impacts on human health. ACS Infectious Diseases, 6(10), 2544–2559. https://doi.org/10.1021/acsinfecdis.0c00036

Roncaioli, J. L. (2022). Cell death in the intestinal epithelium: the molecular basis for mouse resistance to Shigella flexneri infection. https://escholarship.org/uc/item/9tj5c7m1

Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. a. A. (2023). Antimicrobial resistance: a growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946

Samarra, A., Esteban-Torres, M., Cabrera-Rubio, R., Bernabeu, M., Arboleya, S., Gueimonde, M., & Collado, M. C. (2023). Maternal-infant antibiotic resistance genes transference: what do we know? Gut Microbes, 15(1). https://doi.org/10.1080/19490976.2023.2194797

Sarkar, S. R., & Banerjee, S. (2019). Gut microbiota in neurodegenerative disorders. Journal of Neuroimmunology, 328, 98–104. https://doi.org/10.1016/j.jneuroim.2019.01.004

Saturio, S., Rey, A., Samarra, A., Collado, M. C., Suárez, M., Mantecón, L., Solís, G., Gueimonde, M., & Arboleya, S. (2023). Old folks, bad boon: Antimicrobial resistance in the infant gut microbiome. Microorganisms, 11(8), 1907. https://doi.org/10.3390/microorganisms11081907

Schjørring, S., & Krogfelt, K. A. (2011). Assessment of bacterial antibiotic resistance transfer in the gut. International Journal of Microbiology, 2011, 1–10. https://doi.org/10.1155/2011/312956

Segawa, I., Ssebambulidde, K., Kiiza, D., & Mukonzo, J. (2020). Antimicrobial sensitivity testing using the Kirby-Bauer disk diffusion method; limited utility in Ugandan hospitals. AfricArXiv. https://doi.org/10.31730/osf.io/jh96e

Shreiner, A. B., Kao, J. Y., & Young, V. B. (2014). The gut microbiome in health and in disease. Current Opinion in Gastroenterology, 31(1), 69–75. https://doi.org/10.1097/mog.0000000000000139

Singh, M., Mathur, S., Jhingan, P., & Jain, A. (2023). Assessment of changes in Streptococcus pyogenes levels using N-acetylgalactosamine-6-sulfatase marker and pharyngeal airway space with appliance therapy in mouth breathers – An ELISA-based study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 41(2), 111–117. https://doi.org/10.4103/jisppd.jisppd_105_23

Singh, S., Sharma, P., Sarma, D., Kumawat, M., Tiwari, R., Verma, V., Nagpal, R., & Kumar, M. (2023). Implication of obesity and gut microbiome dysbiosis in the etiology of colorectal cancer. Cancers, 15(6), 1913. https://doi.org/10.3390/cancers15061913

So, L., Sok, K., Van, C., & Duk, S. (2024). Antimicrobial Resistance Profiles in Vibrio spp. and Aeromonas spp. from Pangasius Fish: Detection and Identification from the Three Markets at Siem Reap Province, Cambodia. International Journal of Veterinary Medicine and Animal Science, 1(1), 24-31. https://doi.org/10.54536/ijvmas.v1i1.2719

Sultan, S., El-Mowafy, M., Elgaml, A., Ahmed, T. a. E., Hassan, H., & Mottawea, W. (2021). Metabolic influences of gut microbiota dysbiosis on inflammatory bowel disease. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715506

Sun, L., Zhang, X., Zhang, Y., Zheng, K., Xiang, Q., Chen, N., Chen, Z., Zhang, N., Zhu, J., & He, Q. (2019). Antibiotic-Induced disruption of gut microbiota alters local metabolomes and immune responses. Frontiers in Cellular and Infection Microbiology, 9. https://doi.org/10.3389/fcimb.2019.00099

Tagg, J. R., Harold, L. K., Hale, J. D. F., Wescombe, P. A., & Burton, J. P. (2019). Streptococcus: A brief update on the current taxonomic status of the genus. In Lactic Acid Bacteria (pp. 87–107). https://doi.org/10.1201/9781003352075-5

Vandana, U. K. (2020). Linking gut microbiota with human diseases. Bioinformation, 16(2), 196–208. https://doi.org/10.6026/97320630016196

Vashistt, J. (2019). Identification and Characterization of Major Causative Bacterial Agents of Diarrhea from Regions of Himachal Pradesh. http://shodhganga.inflibnet.ac.in/handle/10603/232110

Wilkins, L. J., Monga, M., & Miller, A. W. (2019). Defining dysbiosis for a cluster of chronic diseases. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49452-y

Wongsawan, K., Chaisri, W., Tangtrongsup, S., & Mektrirat, R. (2019). Bactericidal Effect of Clove Oil against Multidrug-Resistant Streptococcus suis Isolated from Human Patients and Slaughtered Pigs. Pathogens, 9(1), 14. https://doi.org/10.3390/pathogens9010014

Wu, S., Liu, F., Zhu, K., & Shen, J. (2019). Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. Journal of Agricultural and Food Chemistry, 67(48), 13195–13211. https://doi.org/10.1021/acs.jafc.9b05595

Yang, Q., Liang, Q., Balakrishnan, B., Belobrajdic, D. P., Feng, Q., & Zhang, W. (2020). Role of dietary nutrients in the modulation of gut microbiota: a Narrative review. Nutrients, 12(2), 381. https://doi.org/10.3390/nu12020381

Yang, X., Wang, D., Zhou, Q., Nie, F., Du, H., Pang, X., Fan, Y., Bai, T., & Xu, Y. (2019). Antimicrobial susceptibility testing of Enterobacteriaceae: determination of disk content and Kirby-Bauer breakpoint for ceftazidime/avibactam. BMC Microbiology, 19(1). https://doi.org/10.1186/s12866-019-1613-5

Zhang, Q., Cheng, L., Wang, J., Hao, M., & Che, H. (2021). Antibiotic-Induced gut microbiota dysbiosis damages the intestinal barrier, increasing food allergy in adult mice. Nutrients, 13(10), 3315. https://doi.org/10.3390/nu13103315

Z Zhou, B., Yuan, Y., Zhang, S., Guo, C., Li, X., Li, G., Xiong, W., & Zeng, Z. (2020). Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.00575

Downloads

Published

2025-06-26

How to Cite

Reza, H. M., Afrin, Z., Shaha, S., Hossen, M. M., Sojol, M. H., Moon, N. I., Antor, M. A., Rahman, M. S., Sarkar, A. P., Enam, T., Banu, N. A., & Jamal, M. A. H. M. (2025). Metagenomic Profiling and Natural Product-Based Control of Antibiotic-Resistant Streptococcus Species in Gut Microbiome of Diarrhea-Associated Children. American Journal of Multidisciplinary Research and Innovation, 4(4), 70–82. https://doi.org/10.54536/ajmri.v4i4.5029