Urbanization and Its Ecological Impacts in Zanzibar: A Spatial-Temporal Analysis with Land Change Modeler (1995–2024)

Authors

  • Mohamed Khalfan Mohamed Abdulrahman Al-Sumait University, Zanzibar, Tanzania.

DOI:

https://doi.org/10.54536/ajgt.v4i1.4619

Keywords:

Zanzibar, Land Use Land Cover Change, Spectral Separability, Transformed Divergence, Jeffries-Matusita

Abstract

This study examines the urban expansion of Zanzibar from 1995 to 2024, utilizing Landsat satellite imagery to highlight the role of remote sensing in understanding land-use changes and their socio-environmental implications. By employing change detection analysis, land cover classification techniques, and spectral separability assessments, the research quantifies the spatial and temporal dynamics of urban growth. Spectral separability was evaluated using Transformed Divergence (TD) and Jeffries-Matusita (J-M) distance metrics to ensure reliable differentiation between land cover classes, enhancing classification accuracy. The analysis focused particularly on urban Unguja Island and its surroundings, where significant urban sprawl has occurred over the past three decades. Results indicate a dramatic increase in built-up areas, rising from 2,650.5 ha in 1995 to 11,407.2 ha in 2024, corresponding to an overall growth of 330.4%. This urban expansion has come at the expense of natural vegetation, which decreased by 26.3% over the study period. While water bodies have remained relatively stable, the transformation of vegetation into urban land highlights the growing environmental pressure exerted by rapid urbanization. The classification accuracy of the study improved over time, with overall accuracies of 78.33%, 87.22%, and 93.33% for the years 1995, 2009, and 2024, respectively. The findings emphasize the importance of implementing sustainable urban planning and policy interventions to mitigate the adverse effects of urban sprawl on ecological sustainability. Integrating remote sensing data with socio-economic analysis is recommended for developing effective land management strategies in Zanzibar.

References

Abd El-Hamid, H. T., El-Alfy, M. A., & Elnaggar, A. A. (2020). Prediction of future situation of land use/cover change and modeling sensitivity to pollution in Edku Lake, Egypt based on geospatial analyses. GeoJournal.

African Union. (2021). Agenda 2063: The Africa we want.

Ahmad, F., Goparaju, L., & Qayum, A. (2017). LULC analysis of urban spaces using Markov chain predictive model at Ranchi in India. Spatial Information Research, 25, 351–359.

Angel, S., Parent, J., & Civco, D. (2021). Urban expansion in the world’s cities: 2000-2030. Cambridge University Press.

Aziz, F., Kusratmoko, E., & Mandini, M. D. (2020). Estimation of changes in the lake water level and area using remote sensing techniques: Case study: Lake Toba, North Sumatra. IOP Conference Series: Earth and Environmental Science, 561, 012022.

Blakime, T. H., Komi, K., Adjonou, K., Hlovor, A. K. D., Gbafa, K. S., Oyedele, P. B., Polorigni, B., & Kokou, K. (2024). Dynamics of built-up areas and challenges of planning and development of urban zone of Greater Lomé in Togo, West Africa. Land, 13, 84.

Cao, W., Li, R., Chi, X., Chen, N., Chen, J., Zhang, H., & Zhang, F. (2017). Island urbanization and its ecological consequences: A case study in the Zhoushan Island, East China. Ecological Indicators, 76, 1–14.

Clarke, K. C. (2018). Cellular automata and agent-based models. In M. Fischer & P. Nijkamp (Eds.), Handbook of regional science. Springer.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46.

Cottrell, B., Kalacska, M., Arroyo-Mora, J.-P., Lucanus, O., Inamdar, D., Løke, T., & Soffer, R. J. (2024). Limitations of a multispectral UAV sensor for satellite validation and mapping complex vegetation. Remote Sensing, 16(13), 2463.

Eastman, J. R. (2016). TerrSet geospatial monitoring and modeling system manual. Clark Labs, Clark University.

Jones, P. (2016). The emergence of Pacific urban villages: Urbanization trends in the Pacific Islands.

Jones, P. (2016). The emergence of Pacific urban villages: Urbanization trends in the Pacific Islands. Asian Development Bank.

Kolić, J., Pernar, R., Seletković, A., & Ančić, M. (2025). Determining the accuracy of structural parameters measured from LiDAR images in lowland oak forests. Forests, 16(2), 340.

Kukkonen, M., Muhammad, M., Käyhkö, N., & Luoto, M. (2017). Urban expansion in Zanzibar City, Tanzania: Analyzing quantity, spatial patterns, and effects of alternative planning approaches. Land Use Policy, 71.

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). The measurement of interrater agreement. In W. A. Shewart & S. S. Wilks (Eds.), Statistical methods for rates and proportions (pp. 598–626). John Wiley & Sons Inc.

Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239.

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.

Gavade, A. B., & Rajpurohit, V. S. (2020). Sparse-FCM and deep learning for effective classification of land area in multi-spectral satellite images. Evolutionary Intelligence.

Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2017). Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Modeling Earth Systems and Environment, 3, 1245–1262.

Gokool, S., Mahomed, M., Brewer, K., Naiken, V., Clulow, A., Sibanda, M., & Mabhaudhi, T. (2024). Crop mapping in smallholder farms using unmanned aerial vehicle imagery and geospatial cloud computing infrastructure. Heliyon, 10, e26913.

Günen, M. A., & Atasever, U. H. (2024). Remote sensing and monitoring of water resources: A comparative study of different indices and thresholding methods. Science of the Total Environment, 926, 172117.

Haldar, S., Chatterjee, U., Bhattacharya, S., Paul, S., Bindajam, A. A., Mallick, J., & Abdo, H. G. (2024). Peri-urban dynamics: Assessing expansion patterns and influencing factors. Ecological Processes, 13, 1.

Harrak, Y., Rachid, A., & Aguejdad, R. (2025). Evaluation of spectral indices and global thresholding methods for the automatic extraction of built-up areas: An application to a semi-arid climate using Landsat 8 imagery. Urban Science, 9(3), 78.

Huang, Y., Yang, B., Wang, M., Liu, B., & Yang, X. (2020). Analysis of the future land cover change in Beijing using CA–Markov chain model. Environmental Earth Sciences, 79, 60.

Jackson, C., & Adam, E. (2021). Machine learning classification of endangered tree species in a tropical submontane forest using WorldView-2 multispectral satellite imagery and imbalanced dataset. Remote Sensing, 13(24).

Jensen, J. (2005). Introductory digital image processing: A remote sensing perspective (4th ed.). Prentice Hall.

Jia, X., & Richards, J. (1999). Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 25–27.

Karimi, H., Jafarnezhad, J., Khaledi, J., & Ahmadi, P. (2018). Monitoring and prediction of land use/land cover changes using CA-Markov model: A case study of Ravansar County in Iran. Arabian Journal of Geosciences, 11, 592.

Kavzoglu, T., & Mather, P. (2000). Using feature selection techniques to produce smaller neural networks with better generalization capabilities. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 7, 23–31.

Lewis, A., Lacey, J., Mecklenburg, S., Ross, J., Siqueira, A., Killough, B., Szantoi, Z., Tadono, T., Rosenqvist, A., Goryl, P., et al. (2018). CEOS analysis-ready data for land (CARD4L) overview. Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 7407–7410.

Li, X., Zhou, Y., Asrar, G. R., & Zhu, Z. (2021). The impacts of urban expansion on climate and environment: A global review. Environmental Research Letters, 16(1), 1–20.

Li, S. H., Jin, B. X., Wei, X. Y., Jiang, Y. Y., & Wang, J. L. (2015). Using CA-Markov model to model the spatiotemporal change of land use/cover in Fuxian Lake for decision support. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-4/W2, 163–168.

Liu, H., Zhang, F., Zhang, L., Lin, Y., Wang, S., & Xie, Y. (2020). UNVI-based time series for vegetation discrimination using separability analysis and random forest classification. Remote Sensing, 12(3), 529.

Ma, X., Hong, Y., & Song, Y. (2020). Super resolution land cover mapping of hyperspectral images using the deep image prior-based approach. International Journal of Remote Sensing, 41, 2818–2834.

Mishra, S., Shrivastava, P., & Dhurvey, P. (2017). Change detection techniques in remote sensing: A review. International Journal of Wireless and Mobile Communication and Industrial Systems, 4, 1–8.

Mohamed, M. K., Adam, E., & Jackson, C. M. (2023). Policy review and regulatory challenges and strategies for the sustainable mangrove management in Zanzibar. Sustainability, 15, 1557.

Mohamed, M. K., Adam, E., & Jackson, C. M. (2023). The spatial and temporal distribution of mangrove forest cover from 1973 to 2020 in Chwaka Bay and Menai Bay, Zanzibar. Applied Sciences, 13, 7962.

Mohamed, M. K., Adam, E., & Jackson, C. M. (2024). Assessing the perception and contribution of mangrove ecosystem services to the well-being of coastal communities of Chwaka and Menai Bays, Zanzibar. Resources, 13(7).

Mota, A., Curcino, N., Gioppo, F., Andrade, L., & Assunção, C. F. (2022). Digital image classification: A comparison of classic methods for land cover and land use mapping. Anuário do Instituto de Geociências, 45, 1–10.

Nalepa, J., Myller, M., Imai, Y., Honda, K., Takeda, T., & Antoniak, M. (2019). Unsupervised segmentation of hyperspectral images using 3D convolutional autoencoders. arXiv preprint, arXiv:1907.08870.

National Bureau of Statistics Tanzania. (2022). 2022 Population and Housing Census: Population distribution by administrative units. National Bureau of Statistics. https://www.nbs.go.tz/uploads/statistics/documents/sw-1720088450-2022%20PHC%20Initial%20Results%20-%20English.pdf

Nikolakopoulos, I. A., & Petropoulos, G. P. (2025). Obtaining a land use/cover cartography in a typical Mediterranean agricultural field combining unmanned aerial vehicle data with supervised classifiers. Land, 14(3), 643.

Petrisor, A.-I., Hamma, W., Nguyen, H. D., Randazzo, G., Muzirafuti, A., Stan, M.-I., Tran, V. T., Așțefănoaiei, R., Bui, Q.-T., Vintilă, D.-F., et al. (2020). Degradation of coastlines under the pressure of urbanization and tourism: Evidence on the change of land systems from Europe, Asia, and Africa. Land, 9, 275.

Pontius, R. G., & Cheuk, M. L. (2006). A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. International Journal of Geographical Information Science, 20(1), 1–30.

Puplampu, D. A., & Boafo, Y. A. (2021). Exploring the impacts of urban expansion on green spaces availability and delivery of ecosystem services in the Accra Metropolis. Journal of Environmental Challenges, 5, 100283.

Revolutionary Government of Zanzibar. (2019). Zanzibar Strategic Urban Plan: Integrated planning for sustainable development. Ministry of Lands, Housing, Water, and Energy, Zanzibar.

Revolutionary Government of Zanzibar. (2020). Zanzibar Urban Development Policy: Promoting sustainable urban growth through infrastructure improvement, economic diversification, and environmental resilience. Ministry of Lands, Housing, Water, and Energy, Zanzibar.

Revolutionary Government of Zanzibar. (2021). Zanzibar Environmental Policy: Enhancing environmental management and resilience. Ministry of Agriculture, Natural Resources, Livestock, and Fisheries, Zanzibar.

Revolutionary Government of Zanzibar. (2022). Zanzibar Vision 2050: Towards inclusive and sustainable development. President’s Office – Finance, Economy, and Development Planning, Zanzibar.

Roy, D. P., Wulder, M. A., Loveland, T. R., et al. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172.

Sánchez-Llull, M., Castellanos Torres, L., Muñoz Caravaca, A., Martín Morales, G., Sauvage, S., Zulueta-Véliz, Y., Olalde Chang, E. J., León Cabrera, J., Vasallo-Rodríguez, L., Ouillon, S., & Sánchez-Pérez, J.-M. (2025). Assessing classification accuracy as a criterion for evaluating the performance of seven topographic correction algorithms in the Trinidad Mountains, Cuba. Remote Sensing, 17(6), 1032.

Sassen, S. (2021). Cities in a world economy (5th ed.). Sage Publications.

Satterthwaite, D., Archer, D., & Dodman, D. (2020). Addressing urban inequalities: Policies and implications. Current Urban Studies, 8(4), 403–418.

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2020). Global urban expansion: A multidimensional approach. Annual Review of Environment and Resources, 45, 79–107.

Seto, K., Reenberg, A., Boone, C., & Fragkias, M. (2012). Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences, 109(29), 13916–13921.

Shao, Z., Cheng, T., Fu, H., Li, D., & Huang, X. (2023). Emerging issues in mapping urban impervious surfaces using high-resolution remote sensing images. Remote Sensing, 15, 2562.

Tessema, W. M., & Abebe, G. B. (2023). Quantification of land use/land cover dynamics and urban growth in rapidly urbanized countries: The case of Hawassa City, Ethiopia. Urban Planning and Transport Research, 11, 1.

Tew, Y. L., Tan, M. L., Samat, N., & Yang, X. (2019). Urban expansion analysis using Landsat images in Penang, Malaysia. Sains Malaysiana, 48(11), 2307–2315.

Tossoukpe, A. Y., Dukiya, J., Folega, F., Thiel, M., & Okhimamhe, A. A. (2025). Dynamics of changes in spatial patterns of built-up areas in two metropolitan areas of Grand Lomé and Greater Accra (West Africa). Urban Science, 9(3), 84.

Tsurusaki, N., & Salem, M. (2024). Impacts of rapid urban expansion on peri-urban landscapes in the global south: Insights from landscape metrics in Greater Cairo. Sustainability, 16, 2316. https://doi.org/10.xxxx/sus16

UN-Habitat. (2020). The world’s cities in 2020: Data booklet. United Nations.

United Nations. (2019). World urbanization prospects: The 2018 revision. United Nations.

U.S. Geological Survey. (2021). Landsat collection 2 level-1 and level-2 science products. U.S. Department of the Interior. Retrieved September 23, 2024, from https://www.usgs.gov/landsat-missions/landsat-collection-2

Vali, A., Comai, S., & Matteucci, M. (2020). Deep learning for land use and land cover classification based on hyperspectral and multispectral Earth observation data: A review. Remote Sensing, 12(15), 2495.

Valero-Jorge, A., González-De Zayas, R., Matos-Pupo, F., Becerra-González, A. L., Álvarez-Taboada, F. (2024). Mapping and monitoring of the invasive species Dichrostachys cinerea (Marabú) in central Cuba using Landsat imagery and machine learning (1994–2022). Remote Sensing, 16, 20.

World Bank. (2021). Transforming Tanzania’s cities: Harnessing urbanization for competitiveness, resilience, and livability. The World Bank.

Zanotta, D. C., Zortea, M., & Ferreira, M. P. (2018). A supervised approach for simultaneous segmentation and classification of remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 162–173.

Zhang, C., Wang, Q., & Atkinson, P. M. (2025). Unsupervised object-based spectral unmixing for subpixel mapping. Remote Sensing of Environment, 318, 114514.

Zhou, Y., Li, X., Asrar, G. R., Smith, S. J., & Imhoff, M. (2018). A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sensing of Environment, 219, 206–220.

Wang, M., Cai, L., Xu, H., & Zhao, S. (2019). Predicting land use changes in northern China using logistic regression, cellular automata, and a Markov model. Arabian Journal of Geosciences, 12, 790.

Downloads

Published

2025-04-30

How to Cite

Urbanization and Its Ecological Impacts in Zanzibar: A Spatial-Temporal Analysis with Land Change Modeler (1995–2024). (2025). American Journal of Geospatial Technology, 4(1), 60-74. https://doi.org/10.54536/ajgt.v4i1.4619

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.