The Effect of Micrite Content on the Geophysical Properties of Reservoir Carbonate Rocks
DOI:
https://doi.org/10.54536/ajgt.v4i1.2472Keywords:
Attenuation, Elastic Wave Velocity, Electrical Resistivity, Micrite Content, Reservoir CarbonateAbstract
Carbonate rocks have a significant economic value as water and hydrocarbon reservoirs and are essential elements for concrete and buildings. This study selected a total of 36 carbonate rock samples, which were tested in the lab for electrical resistivity at 80 Hz, primary and secondary ultrasonic wave velocity, and attenuation. Therefore, to understand the role of microcrystalline calcite (micrite) on the geophysical properties, this study has proposed a new systematic method by using image analysis techniques to quantify micrite and microstructural parameters such as macro porosity, solid grains, microporous micrite (porosity within micrite), and calcite crystals (sparry calcite). The study findings suggest that porosity and permeability have U-shape trends as a function of micrite content due to leaching processes. Thus, higher micrite content causes the elastic wave velocities to increase, making the rock stiffer. When a dual porosity effect is present, the attenuation exhibits two peaks, and is at its highest with micrite content. With minimal values between 10% and 30% of micrite content due to maximal porosity, the apparent formation factor exhibits a U-shape trend with micrite content; as a result, the electrolyte conductivity is high. We concluded that knowledge of micrite content and macro-porosity is of paramount importance to interpret and model the geophysical parameters and to develop a rock physics model.
References
Abousrafa, E. M., Somerville, J. M., Hamilton, S. A., Olden, P. W. H., Smart, B. D. G., & Ford, J. (2009). Pore geometrical model for the resistivity of brine saturated rocks. Journal of Petroleum Science and Engineering, 65(3–4), 113–122. https://doi.org/10.1016/j.petrol.2008.12.009
Adams, A E, Guilford, C., & MacKenzie, W. S. (1984). Atlas of sedimentary rocks under the microscope.
Adams, Anthony E, MacKenzie, W. S., & Guilford, C. (2017). Atlas of sedimentary rocks under the microscope. Routledge.
Archilha, N. L., Missagia, R. M., Hollis, C., De Ceia, M. A. R., McDonald, S. A., Lima Neto, I. A., Eastwood, D. S., & Lee, P. (2016). Permeability and acoustic velocity controlling factors determined from x-ray tomography images of carbonate rocks. AAPG Bulletin, 100(8), 1289–1309. https://doi.org/10.1306/02251615044
Assefa, S., McCann, C., & Sothcott, J. (1999). Attenuation of P- and S-waves in limestones. Geophysical Prospecting, 47(3), 359–392. https://doi.org/10.1046/j.1365-2478.1999.00136.x
Baechle, G. T., Weger, R. J., Eberli, G. P., & Massaferro, J. L. (2004). The role of macroporosity and microporosity in constraining uncertainties and in relating velocity to permeability in carbonate rocks. 74th Ann. Internat. Mtg., January 2004, 1662–1665. https://doi.org/10.1190/1.1845149
Berhanu, S. A. (1994a). Seismic and Petrophysical Properties of Carbonate.
Berhanu, S. A. (1994b). SEISMIC AND PETROPHYSICAL PROPERTIES OF CARBONATE.
Brigaud, B., Vincent, B., Durlet, C., Deconinck, J.-F., Blanc, P., & Trouiller, A. (2010). Acoustic Properties of Ancient Shallow-Marine Carbonates: Effects of Depositional Environments and Diagenetic Processes (Middle Jurassic, Paris Basin, France). Journal of Sedimentary Research, 80(9), 791–807. https://doi.org/10.2110/jsr.2010.071
Cantrell, D. L., & Hagerty, R. M. (1999). Microporosity in Arab Formation Carbonates, Saudi Arabia. GeoArabia, 4(2), 129–154.
Ceia, M., Neto, I. L., Missagia, R., Oliveira, G., Santos, V., Paranhos, R., & Archilha, N. (2017). Evaluation of microporosity aspect ratio and shear wave velocity of middle-east carbonates. 3755–3759.
Chilingar, G. V, Bissell, H. J., & Fairbridge, R. W. (1967). Carbonate rocks. Elsevier.
Costa, A. (2006). Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters, 33(2), 1–5. https://doi.org/10.1029/2005GL025134
Croizé, D., Ehrenberg, S. N., Bjørlykke, K., Renard, F., & Jahren, J. (2010). Petrophysical properties of bioclastic platform carbonates: Implications for porosity controls during burial. Marine and Petroleum Geology, 27(8), 1765–1774. https://doi.org/10.1016/j.marpetgeo.2009.11.008
Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures.
Dvorkin, J. (2009). Kozeny-Carman equation revisited. Pangea.Stanford.Edu/~jack/KC_2009_JD.Pdf, 1–16.
Eberli, G. P., Baechle, G. T., Anselmetti, F. S., & Incze, M. L. (2003). Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge, 22(7), 654–660. https://doi.org/10.1190/1.1599691
El Husseiny, A., & Vanorio, T. (2017). Porosity-permeability relationship in dual-porosity carbonate analogs. Geophysics, 82(1), MR65–MR74. https://doi.org/10.1190/geo2015-0649.1
Fabricius, I. L., Bächle, G. T., & Eberli, G. P. (2010). Elastic moduli of dry and water-saturated carbonates — Effect of depositional texture, porosity, and permeability. Geophysics, 75(3), N65–N78. https://doi.org/10.1190/1.3374690
Folk, R. L. (1959). Practical petrographic classification of limestones. AAPG Bulletin, 43(1), 1–38.
Fournier, F., & Borgomano, J. (2009). Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks. Geophysics, 74(2), E93–E109. https://doi.org/10.1190/1.3043727
Grasby, S. E., & Betcher, R. N. (2002). Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Canadian Journal of Earth Sciences, 39(7), 1053–1063.
Grove, C., & Jerram, D. A. (2011). JPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections. Computers and Geosciences, 37(11), 1850–1859. https://doi.org/10.1016/j.cageo.2011.03.002
Haines, T. J., Neilson, J. E., Healy, D., Michie, E. A. H., & Aplin, A. C. (2015). The impact of carbonate texture on the quantification of total porosity by image analysis. Computers and Geosciences, 85, 112–125. https://doi.org/10.1016/j.cageo.2015.08.016
Hamilton, C. W. (2010). Computers & Geosciences New image processing software for analysing object size-frequency distributions , geometry , orientation , and spatial distribution $. 36, 539–549. https://doi.org/10.1016/j.cageo.2009.09.003
Han, D. (1986). Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51(11), 2093. https://doi.org/10.1190/1.1442062
Han, R., Hirose, T., & Shimamoto, T. (2010). Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research: Solid Earth, 115(3). https://doi.org/10.1029/2008JB006136
Hawkins, P., Tennis, P. D., & Detwiler, R. J. (1996). The use of limestone in Portland cement: a state-of-the-art review. Portland Cement Association.
Higgins, Michael D, & Roberge, J. (2007). Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry. Journal of Volcanology and Geothermal Research, 161(3), 247–260.
Higgins, Michael Denis. (2006). Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press.
Husseiny, A. El, & Vanorio, T. (2015). The effect of micrite content on the acoustic velocity of carbonate rocks. 80(4). https://doi.org/10.1190/geo2014-0599.1
Jerram, D A, & Higgins, M. D. (2007). 3D analysis of rock textures: Quantifying igneous microstructures: Elements, v. 3. https://doi.org/10, 239–245.
Jerram, Dougal A, Mock, A., Davis, G. R., Field, M., & Brown, R. J. (2009). Lithos 3D crystal size distributions : A case study on quantifying olivine populations in kimberlites. LITHOS, 112, 223–235. https://doi.org/10.1016/j.lithos.2009.05.042
Kazatchenko, E., Markov, M., Mousatov, A., & Parra, J. (2006). Carbonate microstructure determination by inversion of acoustic and electrical data: Application to a south Florida aquifer. Journal of Applied Geophysics, 59(1), 1–15. https://doi.org/10.1016/j.jappgeo.2005.07.004
Kowallis, B. J., Jones, L. E. a., & Wang, H. F. (1984). Velocity-porosity-clay content systematics of poorly consolidated sandstones. Journal of Geophysical Research, 89, 10355. https://doi.org/10.1029/JB089iB12p10355
Lambert, L., Durlet, C., Loreau, J. P., & Marnier, G. (2006). Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing. Marine and Petroleum Geology, 23(1), 79–92. https://doi.org/10.1016/j.marpetgeo.2005.04.003
Lima Neto, I. A., Misságia, R. M., Ceia, M. A., Archilha, N. L., & Oliveira, L. C. (2014). Carbonate pore system evaluation using the velocity-porosity-pressure relationship, digital image analysis, and differential effective medium theory. Journal of Applied Geophysics, 110, 23–33. https://doi.org/10.1016/j.jappgeo.2014.08.013
Lucia, F. J., & Conti, R. D. (1987). Rock fabric, permeability, and log relationships in an upward-shoaling, vuggy carbonate sequence.
Mackenzie, W. S/ Guilford, C. (1980). Atlas of rocks-Forming minerals in thin section. 93.
Mackenzie, W. S., Guilford, C., & Scientific, L. (1980). Atlas of rock-forming minerals in thin sections.
Marion, D., Nur, A., Yin, H., & Han, D. H. (1992). Compressional velocity and porosity in sand-clay mixtures. Geophysics, 57(4), 554-563. https://doi.org/10.1190/1.1443269
Marion, Dominique. (1990). Acoustical, Mechanical, And Transport Properties Of Sediments And Granular Materials. Geophysics, 39, 136.
Marks, S. G. (1994). Seismic wave attenuation from vertical seismic profiles. University of Reading.
Mavko, G., & Nur, A. (1997). Short Note The effect of a percolation threshold in the Kozeny-Carman relation Gary Mavko * and Amos Nur *. Most, 62(5), 1480–1482.
Norbisrath, J. H., Eberli, G. P., Laurich, B., Desbois, G., Weger, R. J., & Urai, J. L. (2015). Electrical and fluid flow properties of carbonate microporosity types from multiscale digital image analysis and mercury injection. AAPG Bulletin, 99(11), 2077–2098. https://doi.org/10.1306/07061514205
(North et al., 2013), Laurence, Best, A. I., Sothcott, J., & Macgregor, L. (2013). Laboratory determination of the full electrical resistivity tensor of heterogeneous carbonate rocks at elevated pressures. Geophysical Prospecting, 61(2), 458–470. https://doi.org/10.1111/j.1365-2478.2012.01113.x
(North et al., 2013), LJ, Best, A., & Sothcott, J. (2012). Pressure Sensitivity of the Joint Elastic-electrical Properties of Carbonate Reservoir Rocks. 74th EAGE Conference & Exhibition, June 2012, 4–7. http://www.earthdoc.org/publication/publicationdetails/?publication=59270
Parra, J. O., & Hackert, C. L. (2006). Modeling and interpretation of Q logs in carbonate rock using a double porosity model and well logs. Journal of Applied Geophysics, 58(3), 253–262. https://doi.org/10.1016/j.jappgeo.2005.07.003
Rasband, W. S. (1997). ImageJ. US National Institutes of Health, Bethesda, MD.
Regnet, J. B., Robion, P., David, C., Fortin, J., Brigaud, B., & Yven, B. (2015). Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology. Journal of Geophysical Research: Solid Earth, 120(2), 790–811. https://doi.org/10.1002/2014JB011313
Saner, S., Al-Harthi, A., & Htay, M. T. (1996). Use of tortuosity for discriminating electro-facies to interpret the electrical parameters of carbonate reservoir rocks. Journal of Petroleum Science and Engineering, 16(4), 237–249. https://doi.org/10.1016/S0920-4105(96)00045-9
Saxena, N., Hofmann, R., Alpak, F. O., Dietderich, J., Hunter, S., & Day-Stirrat, R. J. (2017). Effect of image segmentation & voxel size on micro-CT computed effective transport & elastic properties. Marine and Petroleum Geology, 86, 972–990. https://doi.org/10.1016/j.marpetgeo.2017.07.004
Saxena, N., Mavko, G., Hofmann, R., & Srisutthiyakorn, N. (2017). Estimating permeability from thin sections without reconstruction: Digital rock study of 3D properties from 2D images. Computers and Geosciences, 102(February), 79–99. https://doi.org/10.1016/j.cageo.2017.02.014
Sellwood, B. W., Shepherd, T. J., Evans, M. R., & James, B. (1989). Origin of late cements in oolitic reservoir facies: a fluid inclusion and isotopic study (Mid-Jurassic, southern England). Sedimentary Geology, 61(3–4), 223–237. https://doi.org/10.1016/0037-0738(89)90059-6
Vanorio, T., & Mavko, G. (2011). Laboratory measurements of the acoustic and transport properties of carbonate rocks and their link with the amount of microcrystalline matrix. Geophysics, 76(4), E105–E115. https://doi.org/10.1190/1.3580632
Verwer, K., Eberli, G. P., & Weger, R. J. (2011). Effect of pore structure on electrical resistivity in carbonates. AAPG Bulletin, 95(2), 175–190. https://doi.org/10.1306/06301010047
Vialle, S., Dvorkin, J., & Mavko, G. (2013). Implications of pore microgeometry heterogeneity for the movement and chemical reactivity of in carbonates. Geophysics, 78(5), L69–L86. https://doi.org/10.1190/geo2012-0458.1
Weger, R. J., Eberli, G. P., Baechle, G. T., Massaferro, J. L., & Sun, Y. F. (2009). Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bulletin, 93(10), 1297–1317. https://doi.org/10.1306/05270909001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Najeeb S. Aladwani, Laurence J., Ismael Himar Falcon-Suarez, Angus I. Best

This work is licensed under a Creative Commons Attribution 4.0 International License.