A Study on the Therapeutic Effect of 5-Azacytidine to Attenuate the Ramifying Repercussions of Ischemia Reperfusion Injury on Mitochondrial Molecular Machinery

Authors

DOI:

https://doi.org/10.54536/ajcp.v2i1.1169

Keywords:

Mitochondria , Ischemia-Reperfusion Injury, In-Vitro Replication, Mitochondrial Dysfunction

Abstract

5-Azacytidine is a hypomethylating agent that has for long been used in cancer therapy due to its ability to inhibit the protein DNA methyltransferase responsible for hyper-methylating DNA strands. Recently, studies involving in vitro, ex vivo, and in vivo experiments have assessed the cardioprotective effects of 5-Azacytidine during myocardial ischemia-reperfusion injury (IRI). However, the effect of this compound in restoring the damage induced to mitochondrial molecular machinery during IRI has not yet been explored. Understanding this would help us analyze the ways through which mito-targeted therapeutics can be used. The purpose of this study is to investigate the therapeutic impact of 5-Azacytidine, as DNA methylation is a very common epigenetic modification observed during IRI. Furthermore, the protective effect of the compound in alleviating the damage induced to mitochondria during IRI can be identified, as DNA methylation can leave a direct impact on the mitochondrial genes as well. An isolated mitochondria model will be used to determine the effects of 5-Azacydine on mitochondrial molecular machinery as the capacity to generate DNA, RNA, and proteins are preserved in isolated mitochondria. In this study, we focus on the mechanisms of mitochondrial replication, and translation to understand the effect of 5-Azacytidine on the IRI affected mitochondrial system. Mitochondrial dysfunction is also another key turn of events that happens during IRI. The role of 5-Azacyidine in preserving the functionality is also being assessed in our research. The findings of these experiments would help us determine the plasticity the compound imparts on mitochondrial molecular mechanism’s integrity and function post-induced IRI.

Downloads

Download data is not yet available.

References

Andreadou, I., Schulz, R., Papapetropoulos, A., Turan, B., Ytrehus, K., Ferdinandy, P., Daiber, A., & Di Lisa, F. (2020). The role of mitochondrial reactive oxygen species, NO and H2 S in ischaemia/reperfusion injury and cardioprotection. Journal of cellular and molecular medicine, 24(12), 6510–6522. https://doi.org/10.1111/jcmm.15279

Boovarahan, S., & Kurian, G. (2021). Preconditioning the rat heart with 5‐azacytidine attenuates myocardial ischemia/reperfusion injury via PI3K/GSK3β and mitochondrial K ATP signaling axis. Journal Of Biochemical And Molecular Toxicology, 35(12). https://doi.org/10.1002/jbt.22911

Braunwald, E., & Kloner, R. A. (1985). Myocardial reperfusion: a double-edged sword?. The Journal of clinical investigation, 76(5), 1713–1719. https://doi.org/10.1172/JCI112160

Badimon, L., Casaní, L., Camino-Lopez, S., Juan-Babot, O., & Borrell-Pages, M. (2019). GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage. PloS one, 14(6), e0218098. https://doi.org/10.1371/journal.pone.0218098

Barrientos, A., Fontanesi, F., & Díaz, F. (2009). Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Current protocols in human genetics, 63(1), 19-3. https://doi.org/10.1002/0471142905.hg1903s63

Bechtel, W., McGoohan, S., Zeisberg, E. M., Müller, G. A., Kalbacher, H., Salant, D. J., Müller, C. A., Kalluri, R., & Zeisberg, M. (2010). Methylation determines fibroblast activation and fibrogenesis in the kidney. Nature medicine, 16(5), 544–550. https://doi.org/10.1038/nm.2135

Christman, J. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21(35), 5483-5495. https://doi.org/10.1038/sj.onc.1205699

Caccioppo, A., Franchin, L., Grosso, A., Angelini, F., D’Ascenzo, F., & Brizzi, M. F. (2019). Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. International journal of molecular sciences, 20(20), 5024. https://doi.org/10.3390/ijms20205024

Consolini, A. E., Ragone, M. I., Bonazzola, P., & Colareda, G. A. (2017). Mitochondrial Bioenergetics During Ischemia and Reperfusion. Advances in experimental medicine and biology, 982, 141–167. https://doi.org/10.1007/978-3-319-55330-6_8

Czibere, A., Bruns, I., Kröger, N., Platzbecker, U., Lind, J., Zohren, F., Fenk, R., Germing, U., Schröder, T., Gräf, T., Haas, R., & Kobbe, G. (2010). 5-Azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis. Bone marrow transplantation, 45(5), 872–876. https://doi.org/10.1038/bmt.2009.266

Cao, D., Li, D., Huang, Y., Ma, Y., Zhang, B., Zhao, C., Deng, S., Luo, M., Yin, T., Wei, Y. Q., & Wang, W. (2017). 5-Azacytidine promotes invadopodia formation and tumor metastasis through the upregulation of PI3K in ovarian cancer cells. Oncotarget, 8(36), 60173–60187. https://doi.org/10.18632/oncotarget.18580

Cao, L., Zhu, T., Lang, X., Jia, S., Yang, Y., Zhu, C., Wang, Y., Feng, S., Wang, C., Zhang, P., Chen, J., & Jiang, H. (2020). Inhibiting DNA Methylation Improves Survival in Severe Sepsis by Regulating NF-κB Pathway. Frontiers in immunology, 11, 1360. https://doi.org/10.3389/fimmu.2020.01360

Daiber, A., Andreadou, I., Oelze, M., Davidson, S. M., & Hausenloy, D. J. (2021). Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free radical biology & medicine, 163, 325–343. https://doi.org/10.1016/j.freeradbiomed.2020.12.026

Frank, A., Bonney, M., Bonney, S., Weitzel, L., Koeppen, M., & Eckle, T. (2012). Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Seminars in cardiothoracic and vascular anesthesia, 16(3), 123–132. https://doi.org/10.1177/1089253211436350.

Fenaux, P., Mufti, G. J., Hellstrom-Lindberg, E., Santini, V., Finelli, C., Giagounidis, A., Schoch, R., Gattermann, N., Sanz, G., List, A., Gore, S. D., Seymour, J. F., Bennett, J. M., Byrd, J., Backstrom, J., Zimmerman, L., McKenzie, D., Beach, C., Silverman, L. R., & International Vidaza High-Risk MDS Survival Study Group (2009). Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. The Lancet. Oncology, 10(3), 223–232. https://doi.org/10.1016/S1470-2045(09)70003-8

Ferrera, R., Benhabbouche, S., Bopassa, J. C., Li, B., & Ovize, M. (2009). One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model. Cardiovascular drugs and therapy, 23(4), 327–331. https://doi.org/10.1007/s10557-009-6176-5

Gerczuk, P. Z., & Kloner, R. A. (2012). An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. Journal of the American College of Cardiology, 59(11), 969–978. https://doi.org/10.1016/j.jacc.2011.07.054

Gilbert, K., Godbout, R., & Rousseau, G. (2016). Caspase-3 Activity in the Rat Amygdala Measured by Spectrofluorometry After Myocardial Infarction. Journal of visualized experiments, JoVE, 107, e53207. https://doi.org/10.3791/53207

Hemmings, B. A., & Restuccia, D. F. (2015). The PI3K-PKB/Akt pathway. Cold Spring Harbor perspectives in biology, 7(4), a026609. https://doi.org/10.1101/cshperspect.a026609

Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: a neglected therapeutic target. The Journal of clinical investigation, 123(1), 92–100. https://doi.org/10.1172/JCI62874

Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: a neglected therapeutic target. The Journal of clinical investigation, 123(1), 92–100. https://doi.org/10.1172/JCI62874.

Hervouet, E., Cheray, M., Vallette, F. M., & Cartron, P. F. (2013). DNA methylation and apoptosis resistance in cancer cells. Cells, 2(3), 545–573. https://doi.org/10.3390/cells2030545

Jain, D., Ahmad, T., Cairo, M., & Aronow, W. (2017). Cardiotoxicity of cancer chemotherapy: identification, prevention and treatment. Annals of translational medicine, 5(17), 348. https://doi.org/10.21037/atm.2017.06.35

Kurian, G. A., Rajagopal, R., Vedantham, S., & Rajesh, M. (2016). The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxidative medicine and cellular longevity, 2016, 1656450. https://doi.org/10.1155/2016/1656450

Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. International review of cell and molecular biology, 298, 229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7

Kim, Y. S., Kang, W. S., Kwon, J. S., Hong, M. H., Jeong, H. Y., Jeong, H. C., Jeong, M. H., & Ahn, Y. (2014). Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis. Journal of cellular and molecular medicine, 18(6), 1018–1027. https://doi.org/10.1111/jcmm.12248

Kumar, P., Nagarajan, A., & Uchil, P. (2018). Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor Protocols, 2018(6), pdb.prot095505. https://doi.org/10.1101/pdb.prot095505

Kasibhatla, S., Amarante-Mendes, G. P., Finucane, D., Brunner, T., Bossy-Wetzel, E., & Green, D. R. (2006). Acridine Orange/Ethidium Bromide (AO/EB) Staining to Detect Apoptosis. CSH protocols, 2006(3), pdb.prot4493. https://doi.org/10.1101/pdb.prot4493

Moore, L. D., Le, T., & Fan, G. (2012). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), 23–38. https://doi.org/10.1038/npp.2012.112 Yang, M., Linn, B. S., Zhang, Y., & Ren, J. (2019). Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochimica et biophysica acta. Molecular basis of disease, 1865(9), 2293–2302. https://doi.org/10.1016/j.bbadis.2019.05.007

Mangoni, A. A., Tommasi, S., Zinellu, A., Sotgia, S., Carru, C., Piga, M., & Erre, G. L. (2018). Repurposing existing drugs for cardiovascular risk management: a focus on methotrexate. Drugs in context, 7, 212557. https://doi.org/10.7573/dic.212557

Ma, H., Guo, R., Yu, L., Zhang, Y., & Ren, J. (2011). Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. European heart journal, 32(8), 1025–1038. https://doi.org/10.1093/eurheartj/ehq253

Nikolaou, P. E., Boengler, K., Efentakis, P., Vouvogiannopoulou, K., Zoga, A., Gaboriaud-Kolar, N., Myrianthopoulos, V., Alexakos, P., Kostomitsopoulos, N., Rerras, I., Tsantili-Kakoulidou, A., Skaltsounis, A. L., Papapetropoulos, A., Iliodromitis, E. K., Schulz, R., & Andreadou, I. (2019). Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors. Cardiovascular research, 115(7), 1228–1243. https://doi.org/10.1093/cvr/cvz061

Neri, M., Riezzo, I., Pascale, N., Pomara, C., & Turillazzi, E. (2017). Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediators of inflammation, 2017, 7018393. https://doi.org/10.1155/2017/7018393

Okamoto, H., Kamitsuji, Y., Komori, Y., Sasaki, N., Tsutsumi, Y., Miyashita, A., Tsukamoto, T., Mizutani, S., Shimura, Y., Kobayashi, T., Uoshima, N., & Kuroda, J. (2021). Durable Remission of Chemotherapy-Refractory Myeloid Sarcoma by Azacitidine. The Tohoku journal of experimental medicine, 254(2), 101–105. https://doi.org/10.1620/tjem.254.101

Oran, B., de Lima, M., Garcia-Manero, G., Thall, P. F., Lin, R., Popat, U., Alousi, A. M., Hosing, C., Giralt, S., Rondon, G., Woodworth, G., & Champlin, R. E. (2020). A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients. Blood advances, 4(21), 5580–5588. https://doi.org/10.1182/bloodadvances.2020002544

Palmer, J. W., Tandler, B., & Hoppel, C. L. (1977). Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. The Journal of biological chemistry, 252(23), 8731–8739.

Qian, Q., Qian, H., Zhang, X., Zhu, W., Yan, Y., Ye, S., Peng, X., Li, W., Xu, Z., Sun, L., & Xu, W. (2012). 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem cells and development, 21(1), 67–75. https://doi.org/10.1089/scd.2010.0519

Ravindran, S., Boovarahan, S. R., Shanmugam, K., Vedarathinam, R. C., & Kurian, G. A. (2017). Sodium Thiosulfate Preconditioning Ameliorates Ischemia/Reperfusion Injury in Rat Hearts Via Reduction of Oxidative Stress and Apoptosis. Cardiovascular drugs and therapy, 31(5-6), 511–524. https://doi.org/10.1007/s10557-017-6751-0

Suhaeri, M., Subbiah, R., Van, S. Y., Du, P., Kim, I. G., Lee, K., & Park, K. (2015). Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment. Tissue engineering. Part A, 21(11-12), 1940–1951. https://doi.org/10.1089/ten.TEA.2014.0591

Sánchez-Hernández, C. D., Torres-Alarcón, L. A., González-Cortés, A., & Peón, A. N. (2020). Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators of inflammation, 2020, 8405370. https://doi.org/10.1155/2020/8405370

Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical biochemistry, 25(1), 192–205. https://doi.org/10.1016/0003-2697(68)90092-4

Tabaei, S., & Tabaee, S. (2019). DNA methylation abnormalities in atherosclerosis. Artificial Cells, Nanomedicine, And Biotechnology, 47(1), 2031-2041. https://doi.org/10.1080/21691401.2019.1617724

Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., White, H. D., Joint ESC/ACCF/AHA/WHF Task Force for Universal Definition of Myocardial Infarction, Authors/Task Force Members Chairpersons, Thygesen, K., Alpert, J. S., White, H. D., Biomarker Subcommittee, Jaffe, A. S., Katus, H. A., Apple, F. S., Lindahl, B., Morrow, D. A., ECG Subcommittee, Chaitman, B. R., Clemmensen, P. M., … Wagner, D. R. (2012). Third universal definition of myocardial infarction. Journal of the American College of Cardiology, 60(16), 1581–1598. https://doi.org/10.1016/j.jacc.2012.08.001

Yoshimoto, G., Mori, Y., Kato, K., Odawara, J., Kuriyama, T., Ueno, T., Obara, T., Yurino, A., Yoshida, S., Ogawa, R., Ohno, Y., Iwasaki, H., Eto, T., Akashi, K., & Miyamoto, T. (2021). Azacitidine for the treatment of patients with relapsed acute myeloid leukemia after allogeneic stem cell transplantation. Leukemia & lymphoma, 62(12), 2939–2948. https://doi.org/10.1080/10428194.2021.1941937

Yang, C., Yi, J., Gong, X., Ge, P., Dai, J., Lin, L., Xing, Y., & Zhang, L. (2017). Anti-oxidative and anti-inflammatory benefits of the ribonucleoside analogue 5-azacitidine in mice with acetaminophen-induced toxic hepatitis. International immunopharmacology, 48, 91–95. https://doi.org/10.1016/j.intimp.2017.05.001

Yu, S. M., & Kim, S. J. (2016). 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways. International journal of oncology, 49(3), 1241–1247. https://doi.org/10.3892/ijo.2016.3612

Yang, K., Chen, Z., Gao, J., Shi, W., Li, L., Jiang, S., Hu, H., Liu, Z., Xu, D., & Wu, L. (2017). The Key Roles of GSK-3β in Regulating Mitochondrial Activity. Cellular physiology and biochemistry. International journal of experimental cellular physiology, biochemistry, and pharmacology, 44(4), 1445–1459. https://doi.org/10.1159/000485580

Downloads

Published

2023-02-05

How to Cite

Yegneshwaran, V., Prem, P. N., Boovarahan, S. R., & Kurian, G. A. (2023). A Study on the Therapeutic Effect of 5-Azacytidine to Attenuate the Ramifying Repercussions of Ischemia Reperfusion Injury on Mitochondrial Molecular Machinery. American Journal of Chemistry and Pharmacy, 2(1), 8–20. https://doi.org/10.54536/ajcp.v2i1.1169