A Review on n-3 HUFA and Live Food Organism for Marine Fish Larvae Nutrition


  • Tanwi Dey Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh
  • Piash Kumer Ghosh Department of Medicine, Faculty of Veterinary, Animal and Biomedical Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
  • Shishir Kumar Nandi Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh
  • Gourab Chowdhury Department of Fish Biology and Genetics, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh
  • Sohel Mian Department of Fish Biology and Genetics, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh
  • Md. Shahab Uddin Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh




DHA, Live food organism, n-3 HUFA, Marine Fish Larvae


Marine fish farm industries face ongoing challenges due to a lack of quality seed, a low survival rate and a slow growth rate of marine fish larvae. One of the most sensitive problems is a nutritionally balanced quality feed for rearing these larval fish at the first feeding stage. Many studies have reported high requirements of n-3 highly unsaturated fatty acids, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for proper development, which have also been reported to increase the survival and growth status of larval fish. Marine fish larvae have difficulties accepting artificial feed at their weaning stage, so live food plays a vital role in the rearing process. Artemia is one of the most commonly used live food organisms in marine fish larvae production systems. However, they are deficient in EPA and DHA, which are most critical for larval development. Recent advancements in live food production systems have developed several techniques of bio-encapsulation and enrichment of nutrients in live food. But the instability of DHA and the high cost of enrichment procedures remain-bottlenecks for supplying proper nutrients through live food. This short review emphasizes challenges in marine fish larvae culture in terms of HUFAs nutrition with a comparative study on DHA requirements of marine larval fish and its availability in live food organism Artemia. We also highlighted several factors affecting DHA enrichment process and its degradation following enrichment procedures.


Download data is not yet available.


Abatzopoulos, T. J., Baxevanis, A. D., Triantaphyllidis, G. V., Criel, G., Pador, E. L., Van Stappen, G., & Sorgeloos, P., (2006). Quality evaluation of Artemia urmiana Günther (Urmia Lake, Iran) with special emphasis on its particular cyst characteristics (International Study on Artemia LXIX). Aquaculture, 254(1-4), 442-454. https://doi.org/10.1016/j.aquaculture.2005.11.007

Akoh, C. C., (2017). Food lipids: chemistry, nutrition, and biotechnology. CRC press. https://doi.org/10.1201/9781315151854

Almli, M., (2012). Effects of different live feed on larval growth and development in ballan wrasse (Labrus bergylta Ascanius, 1767). A metabolomics study.

Barclay, W., & Zeller, S., (1996). Nutritional Enhancement of n-3 and n-6 Fatty Acids in Rotifers and Artemia Nauplii by Feeding Spray-dried Schizochytrium sp. Journal of the World Aquaculture Society, 27(3), 314-322. https://doi.org/10.1111/j.1749-7345.1996.tb00614.x

Bell, J. G., Castell, J. D., Tocher, D. R., MacDonald, F. M., & Sargent, J. R., (1995). Effects of different dietary arachidonic acid: docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot (Scophthalmus maximus). Fish Physiology and Biochemistry, 14(2), 139-151.

Betancor, M. B., Nordrum, S., Atalah, E., Caballero, M. J., Benítez-Santana, T., Roo, J., ... & Izquierdo, M. (2012). Potential of three new krill products for seabream larval production. Aquaculture Research, 43(3), 395-406. https://doi.org/10.1111/j.1365-2109.2011.02842.x

Brown, C., & Laland, K., (2001). Social learning and life skills training for hatchery reared fish. Journal of Fish Biology, 59(3), 471-493. https://doi.org/10.1111/j.1095-8649.2001.tb02354.x

Cahu, C., Infante, J. Z., & Takeuchi, T., (2003). Nutritional components affecting skeletal development in fish larvae. Aquaculture, 227(1-4), 245-258. https://doi.org/10.1016/S0044-8486(03)00507-6

Conceição, L. E., Yúfera, M., Makridis, P., Morais, S., & Dinis, M. T., (2010). Live feeds for early stages of fish rearing. Aquaculture research, 41(5), 613-640. https://doi.org/10.1111/j.1365-2109.2009.02242.x

Copeman, L. A., Parrish, C. C., Brown, J. A., & Harel, M., (2002). Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture, 210(1-4), 285-304.

Coutteau, P., & Sorgeloos, P., (1992). The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. Journal of Shellfish Research, 11, 467-467. http://hdl.handle.net/1854/LU-240467

Coutteau, P., & Sorgeloos, P., (1997). Manipulation of dietary lipids, fatty acids and vitamins in zooplankton cultures. Freshwater Biology, 38(3), 501-512. https://doi.org/10.1046/j.1365-2427.1997.00239.x

Dabrowski, K., & Glogowski, J., (1977). Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia, 54(2), 129-134.

Danielsen, T. L., Evjemo, J. O., & Olsen, Y., (1995). Stability of short term enriched n-3 fatty acids in Artemia during starvation at different temperatures. European Aquaculture Society Special Publication, 24, 128-131.

Dhont, J., & Sorgeloos, P., (2002). Applications of Artemia. In Artemia: Basic and applied biology (pp. 251-277). Springer, Dordrecht.

Dhont, J., & Van Stappen, G., (2003). Biology, tank production and nutritional value of Artemia. Live feeds in marine aquaculture, 65-121.

Dhont, J., & Van Stappen, G., (2003). Biology, tank production and nutritional value of Artemia. Live feeds in marine aquaculture, 65-121.

Estevez, A., Ishikawa, M., & Kanazawa, A. (1997). Effects of arachidonic acid on pigmentation and fatty acid composition of Japanese flounder, Paralichthys olivaceus (Temminck and Schlegel). Aquaculture research, 28(4), 279-289. https://doi.org/10.1111/j.1365-2109.1997.tb01044.x

Estevez, A., McEvoy, L. A., Bell, J. G., & Sargent, J. R. (1998). Effects of temperature and starvation time on the pattern and rate of loss of essential fatty acids in Artemia nauplii previously enriched using arachidonic acid and eicosapentaenoic acid-rich emulsions. Aquaculture, 165(3-4), 295-311. https://doi.org/10.1016/S0044-8486(98)00260-9

Evjemo, J. O., Coutteau, P., Olsen, Y., & Sorgeloos, P., (1997). The stability of docosahexaenoic acid in two Artemia species following enrichment and subsequent starvation. Aquaculture, 155(1-4), 135-148. https://doi.org/10.1016/S0044-8486(97)00124-5

Evjemo, J. O., Danielsen, T. L., & Olsen, Y., (2001). Losses of lipid, protein and n− 3 fatty acids in enriched Artemia franciscana starved at different temperatures. Aquaculture, 193(1-2), 65-80. https://doi.org/10.1016/S0044-8486(00)00470-1

Evjemo, J. O., Reitan, K. I., & Olsen, Y., (2003). Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227(1-4), 191-210. https://doi.org/10.1016/S0044-8486(03)00503-9

FAO. 2020a. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. 244 pp. (also available at https://doi.org/10.4060/ca9229en)

FAO. 2020b. Fishery and Aquaculture Statistics. Global production by production source 1950- 2018 (FishstatJ). In: FAO Fisheries Division [online]. Rome. Updated 2020. www.fao.org/ fishery/statistics/software/fishstatj/en

FAO. 2020c. Fishery and Aquaculture Statistics. Food balance sheets of fish and fish products 1961-2017 (FishstatJ). In: FAO Fisheries Division [online]. Rome. Updated 2020. www.fao.org/ fishery/statistics/software/fishstatj/en

FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en

Fehér, M., Baranyai, E., Simon, E., Bársony, P., Szűcs, I., Posta, J., & Stündl, L., (2013). The interactive effect of cobalt enrichment in Artemia on the survival and larval growth of barramundi, Lates calcarifer. Aquaculture, 414, 92-99.

Fernández-Palacios, H., Izquierdo, M. S., Robaina, L., Valencia, A., Salhi, M., & Vergara, J., (1995). Effect of n− 3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture, 132(3-4), 325-337. https://doi.org/10.1016/0044-8486(94)00345-O

Gapasin, R. S. J., & Duray, M. N., (2001). Effects of DHA-enriched live food on growth, survival and incidence of opercular deformities in milkfish (Chanos chanos). Aquaculture, 193(1-2),49-63. https://doi.org/10.1016/S0044-8486(00)00469-5

Guinot, D., Monroig, Ó., Hontoria, F., Amat, F., Varó, I., & Navarro, J. C., (2013). Enriched on-grown Artemia metanauplii actively metabolise highly unsaturated fatty acid-rich phospholipids. Aquaculture, 412, 173-178.https://doi.org/10.1016/j.aquaculture.2013.07.030

Hamre, K., & Harboe, T., (2008). Critical levels of essential fatty acids for normal pigmentation in Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture, 277(1-2), 101-108. https://doi.org/10.1016/j.aquaculture.2008.02.020

Hawkyard, M., Stuart, K., Langdon, C., & Drawbridge, M., (2016). The enrichment of rotifers (B rachionus plicatilis) and Artemia franciscana with taurine liposomes and their subsequent effects on the larval development of C alifornia yellowtail (S eriola lalandi). Aquaculture Nutrition, 22(4), 911-922.

Henna Lu, F. S., Nielsen, N. S., Timm-Heinrich, M., & Jacobsen, C., (2011). Oxidative stability of marine phospholipids in the liposomal form and their applications. Lipids, 46(1), 3-23.

Infante, J. Z., & Cahu, C. L., (2001). Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4), 477-487. https://doi.org/10.1016/S1532-0456(01)00274-5.

Ito, M. K., & Simpson, K. L., (1996). The biosynthesis of ω3 fatty acids from 18: 2ω6 in Artemia spp. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 115(1), 69-76. https://doi.org/10.1016/0305-0491(96)00091-0

Koedijk, R. M., Folkvord, A., Foss, A., Pittman, K., Stefansson, S. O., Handeland, S., & Imsland, A. K., (2010). The influence of first-feeding diet on the Atlantic cod Gadus morhua phenotype: survival, development and long-term consequences for growth. Journal of Fish Biology, 77(1), 1-19. https://doi.org/10.1111/j.1095-8649.2010.02652.x

Kolkovski, S., (2001). Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture, 200(1-2), 181-201. https://doi.org/10.1016/S0044-8486(01)00700-1

Lavens, P., & Sorgeloos, P., (1987). The cryptobiotic state of Artemia cysts, its diapause deactivation and hatching: a review. Artemia research and its applications, 3, 27-63.

Lavens, P., & Sorgeloos, P., (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181(3-4), 397-403. https://doi.org/10.1016/S0044-8486(99)00233-1

Léger, P., Bengtson, D. A., Simpson, K. L., & Sorgeloos, P. (1986). The use and nutritional value of Artemia as a food source. Oceanogr. Mar. Biol. Ann. Rev, 24, 521-623.

Lyberg, A. M., Fasoli, E., & Adlercreutz, P., (2005). Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids, 40(9), 969. https://doi.org/10.1007/s11745-005-1458-1

Makridis, P., & Vadstein, O., (1999). Food size selectivity of Artemia franciscana at three developmental stages. Journal of plankton research, 21(11), 2191-2201. https://doi.org/10.1093/plankt/21.11.2191

McEvoy, L. A., Navarro, J. C., Bell, J. G., & Sargent, A. J., (1995). Autoxidation of oil emulsions during the Artemia enrichment process. Aquaculture, 134(1-2), 101-112. https://doi.org/10.1016/0044-8486(95)00048-7

Monroig, Ó., Navarro, J. C., Amat, F., González, P., & Hontoria, F., (2007). Oxidative stability and changes in the particle size of liposomes used in the Artemia enrichment. Aquaculture, 266(1-4), 200-210.


Monroig, Ó., Tocher, D. R., & Navarro, J. C., (2013). Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Marine drugs, 11(10), 3998-4018. https://doi.org/10.3390/md11103998

Nanton, D. A., & Castell, J. D., (1999). The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture, 175(1-2), 167-181. https://doi.org/10.1016/S0044-8486(99)00031-9

Navarro, J. C., Amat, F., & Sargent, J. R., (1993). The lipids of the cysts of freshwater-and marine-type Artemia. Aquaculture, 109(3-4), 327-336. https://doi.org/10.1016/0044-8486(93)90172-U

Navarro, J. C., Henderson, R. J., McEvoy, L. A., Bell, M. V., & Amat, F., (1999). Lipid conversions during enrichment of Artemia. Aquaculture, 174(1-2), 155-166. https://doi.org/10.1016/S0044-8486(99)00004-6

Naz, M., (2008). The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis, Müller) and Artemia during the enrichment and starvation periods. Fish Physiology and Biochemistry, 34(4), 391-404.

Nielsen, R., Nielsen, M., Abate, T. G., Hansen, B. W., Jepsen, P. M., Nielsen, S. L., & Buchmann, K., (2017). The importance of live-feed traps–farming marine fish species. Aquaculture research, 48(6), 2623-2641. https://doi.org/10.1111/are.13281

Norouzitallab, P., Baruah, K., Vandegehuchte, M., Van Stappen, G., Catania, F., Bussche, J. V., & Bossier, P., (2014). Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model. The FASEB Journal, 28(8), 3552-3563. https://doi.org/10.1096/fj.14-252049

Persoone, G., Sorgeloos, P., Roels, O. and Jaspers, E., (1980). The use of the brine shrimp Artemia in aquaculture. The brine shrimp Artemia, 3, 25-46.

Reis, D. B., Acosta, N. G., Almansa, E., Navarro, J. C., Tocher, D. R., Andrade, J. P., ... & Rodríguez, C. (2017). Comparative study on fatty acid metabolism of early stages of two crustacean species: Artemia sp. metanauplii and Grapsus adscensionis zoeae, as live prey for marine animals. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 204, 53-60. https://doi.org/10.1016/j.cbpb.2016.11.002

Ruiz, O., Amat, F., & Navarro, J. C., (2008). A comparative study of the fatty acid profile of Artemia franciscana and A. persimilis cultured at mesocosm scale. Journal of Experimental Marine Biology and Ecology, 354(1), 9-16. https://doi.org/10.1016/j.jembe.2007.09.015

Ruiz, O., Medina, G. R., Cohen, R. G., Amat, F., & Navarro, J. C., (2007). Diversity of the fatty acid composition of Artemia spp. cysts from Argentinean populations. Marine Ecology Progress Series, 335, 155-165.

Sargent, J. R., McEvoy, L. A., & Bell, J. G., (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155(1-4), 117-127. https://doi.org/10.1016/S0044-8486(97)00122-1

Sargent, J. R., Tocher, D. R., & Bell, J. G., (2003). The lipids. Fish nutrition, 181-257. https://doi.org/10.1016/B978-012319652-1/50005-7

Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., & Tocher, D., (1999). Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 179(1-4), 217-229.


Schauer, P. S., & Simpson, K. L., (1985). Bioaccumulation and bioconversion of dietary labeled fatty acids in Artemia and winter flounder (Pseudopleuronectes americanus). Canadian Journal of Fisheries and Aquatic Sciences, 42(8), 1430-1438. https://doi.org/10.1139/f85-179

Schlechtriem, C., Arts, M. T., & Zellmer, I. D.,(2006). Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera). Lipids, 41(4), 397-400.

Schulte, P. M., (2015). The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. The Journal of experimental biology, 218(12), 1856-1866. https://doi.org/10.1242/jeb.118851

Shields, R. J., (2001). Larviculture of marine finfish in Europe. Aquaculture, 200(1-2), 55-88. https://doi.org/10.1016/S0044-8486(01)00694-9

Sperfeld, E., & Wacker, A., (2012). Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs. Freshwater Biology, 57(3), 497-508. https://doi.org/10.1111/j.1365-2427.2011.02719.x

Stappen, G. V., (2002). Zoogeography. In Artemia: Basic and applied biology (pp. 171-224). Springer, Dordrecht. DOI: 10.1007/978-94-017-0791-6_4

Stappen, G. V., Sui, L., Xin, N., & Sorgeloos, P., (2003). Characterisation of high-altitude Artemia populations from the Qinghai-Tibet Plateau, PR China. In Aquatic Biodiversity (pp. 179-192). Springer, Dordrecht. DOI: 10.1007/978-94-007-1084-9_12

Støttrup, J., & McEvoy, L. (Eds.)., (2008). Live feeds in marine aquaculture. John Wiley & Sons.

Tocher, D. R., (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture research, 41(5), 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

van der Meeren, T., Olsen, R. E., Hamre, K., & Fyhn, H. J., (2008). Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274(2-4), 375-397. https://doi.org/10.1016/j.aquaculture.2007.11.041

Villalta, M., Estévez, A., Bransden, M. P., & Bell, J. G., (2005). The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture, 249(1-4), 353-365. https://doi.org/10.1016/j.aquaculture.2005.03.037

Watanabe, T., & Kiron, V., (1994). Prospects in larval fish dietetics. Aquaculture, 124(1-4), 223-251. https://doi.org/10.1016/0044-8486(94)90386-7

Watanabe, T., Arakawa, T., Kitajima, C., & Fujita, S. (1984). Effect of nutritional quality of broodstock diets on reproduction of red sea bream. Nippon Suisan Gakkaishi, 50(3), 495-501.

Watanabe, T., Ohta, M., Kitajima, C., & Fujita, S., (1982). Improvement of dietary value of brine shrimp Artemia salina for fish larvae by feeding them on w3 highly unsaturated fatty acids. Bulletin of the Japanese Society of Scientific Fisheries, 48(12), 1775-1782. https://doi.org/10.2331/suisan.48.1775

Watanabe, T., Oowa, F., Kitajima, C., & Fujita, S., (1980). Relationship between dietary value of brine shrimp Artemia salina and their content of omega 3 highly unsaturated fatty acids. Bulletin of the Japanese Society of Scientific Fisheries, 46(1), 35-41.

Werbrouck, E., Bodé, S., Van Gansbeke, D., Vanreusel, A., & De Troch, M., (2017). Fatty acid recovery after starvation: insights into the fatty acid conversion capabilities of a benthic copepod (Copepoda, Harpacticoida). Marine Biology, 164(7), 1-15.

Werbrouck, E., Van Gansbeke, D., Vanreusel, A., & De Troch, M., (2016). Temperature affects the use of storage fatty acids as energy source in a benthic copepod (Platychelipus littoralis, Harpacticoida). PloS one, 11(3), e0151779. https://doi.org/10.1371/journal.pone.0151779

Yúfera, M., & Darias, M. J., (2007). The onset of exogenous feeding in marine fish larvae. Aquaculture, 268(1-4), 53-63. https://doi.org/10.1016/j.aquaculture.2007.04.050




How to Cite

Dey, T., Ghosh, P. K., Nandi, S. K., Chowdhury, G., Mian, S., & Uddin, M. S. (2022). A Review on n-3 HUFA and Live Food Organism for Marine Fish Larvae Nutrition. American Journal of Agricultural Science, Engineering, and Technology, 6(3), 88–102. https://doi.org/10.54536/ajaset.v6i3.770