Role of Inoculum Source in Bio-Methane Production From Tea Waste and Fish Residues Using Methanogenesis Anaerobic Co-Digestion Process

Authors

  • Muhammad Rashed Al Mamun Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan https://orcid.org/0000-0003-3302-9742
  • Shankha Rupa Dey Department of Farm Power and Machinery, Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
  • Jinat Jahan Department of Farm Power and Machinery, Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
  • Md. Azizul Haque Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali-3814, Bangladesh https://orcid.org/0000-0001-7817-560X

DOI:

https://doi.org/10.54536/ajaset.v9i2.4315

Keywords:

Cow Dung, Fish Residue, Sustainable Renewable Energy, Tea Waste, Waste Management

Abstract

Fish residues and tea waste, which are often regarded as environmental pollutants due to their unsanitary nature, can be repurposed as effective biocatalysts to improve biogas production. This research explored the anaerobic co-digestion of fish residues (FR) and tea waste (TW) with cow dung (CD) under mesophilic conditions to enhance biogas yield. Substrates were combined with water in a 1:1 ratio, and biogas production was measured using the volumetric water displacement method. The findings revealed a significant improvement in biogas production rates through co-digestion. The highest biogas yields were observed at different substrate ratios: 190.25 mL/day on day 9 for FR:CD (1.5:1), 45.13 mL/day on day 23 for FR:TW:CD (1:1:0.5), 72.1 mL/day on day 21 for FR:TW:CD (1:1:1), and 35.18 mL/day on day 21 for TW:CD (1.5:1). In a subsequent phase, biogas production increased further, with maximum yields of 289.56 mL/day on day 10 for FR:CD (1.5:1), 246.95 mL/day on day 9 for FR:TW:CD (1:1:1), 205.67 mL/day on day 9 for FR:TW:CD (1:1:0.5), and 150 mL/day on day 14 for TW:CD (1.5:1). These results demonstrate the potential of co-digestion to optimize biogas production within a 40-day hydraulic retention time, providing a sustainable solution for energy generation and waste management while reducing environmental pollution.

Downloads

Download data is not yet available.

References

Akinbami, J. F. K., Ilori, M., Oyebisi, T., Akinwumi, I., & Adeoti, O. (2001). Biogas energy use in Nigeria: current status, future prospects and policy implications. Renewable Sust. Energy Rev., 5(1), 97-112.

Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review. Environmental Chemistry Letters, 1-28.

Andersson, F. A. T., Karlsson, A., Svensson, B. H., & Ejlertsson, J. (2004). Occurrence and abatement of volatile sulfur compounds during biogas production. JAPCA J. Air Waste Ma., 54(7), 855-861.

Angelidaki, I., Ellegaard, L., & Ahring, B.K. (2003). Applications of the anaerobic digestion process. In Ahring, B.K. Biomethanation (2 ed., pp. 1-33). Springer.

Archana, K., Visckram, A. S., Kumar, P. S., Manikandan, S., Saravanan, A., & Natrayan, L. (2024). A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals. Fuel, 358, 130298.

Chen, Y. R., Varel, V. H., & Hashimoto, A. G. (1980). Methane production from agricultural residues. J. Ind. Eng. Chem., 19(12), 471-477.

Dearman, B., & Bentham, R.H., (2007). Anaerobic digestion of food waste: Comparing leachate exchange rates in sequential batch systems digesting food waste and biosolids. Waste Management, 27(12), 1792-1799. https://doi.org/10.1016/j.wasman.2006.08.006.

Hashimoto, A. G., Chen, Y. R., & Varel, V. H. (1981). Theoretical aspects of anaerobic fermentation: state of the art. In: Livestock waste: a renewable resource. Proceedings of the 4th International Symposium on Livestock Wastes. American Society of Agricultural Engineers, St Joseph, Michigan, 86–91.

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, L. K. (2015). Plastic waste inputs from land into the ocean. Science, 347, 768–771.

Jayaraj, S., Deepanraj, B., & Sivasubramanian, V. (2014). Study on the effect of pH on biogas production from food waste by anaerobic digestion. 9th Annual Green Energy Conference in Tianjin China.

Jonas, L., Simon, Z., Hans, O., & Andreas, L. (2014). Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. J. of Environmental Tech., 36(2).

Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 8750221, 43. https://doi.org/10.1155/2022/8750221

Klass, D. L. (1984). Methane from anaerobic fermentation. Science, 223, 1021-1027.

Kostecka, J., Koc-Jurczyk, J., & Brudzisz, K. (2014). Waste management in Poland and European Union. Arch. Waste Manag. Environ. Prot., 16, 1–10.

Lansing, S., Botero, R. B., & Martin, J. F. (2008). Waste treatment and biogas quality in small-scale agricultural digesters. Bioresource Technol., 99(13), 5881-5890.

Maile, O. I., Muzenda, E., & Tesfagiorgis, H. (2017). Chemical adsorption of carbon dioxide in biogas purification. Proceedia Manufacturing, 7, 639-646.

Makádi, M., Tomócsik, A., & Orosz, V. (2012). Digestate: A new nutrient source - Review, Biogas. Dr. Sunil Kumar (Ed.) InTech.

Mbugua, J. K., Mbui, D. N., Mwaniki, J. M., & Waswa, G. A. (2024). Kinetics Modeling of Biogas Production from Market Waste Inoculated with Abattoir Waste. American Journal of Innovation in Science and Engineering, 3(1), 1–8. https://doi.org/10.54536/ajise.v3i1.1880

Pound, B., Done, F., & Preston, T. (1981). Biogas production from mixtures of cattle slurry and pressed sugar cane stalk with and without urea. Trop. Anim. Prod., 6(1), 11-21.

Ramachandran, S., Singh, S. K., Larroche, C., Soccol, C. R., & Pandey, A. (2007). Oil cakes and their biotechnological applications–A review. Bioresource Technol., 98(10), 2000-2009.

Rameshprabu, R., & Yuwalee, U. (2016). Effect of temperature on the performance of biogas production from Duckweed. Chem. Research J., 1(1), 58-66.

Riagbayire, F., & Nayem, Z. (2023). Biogas: An Alternative Energy Source for Domestic and Small-Scale Industrial Use in Nigeria. American Journal of Innovation in Science and Engineering, 2(1), 8–16. https://doi.org/10.54536/ajise.v2i1.1217

Rosik-Dulewska, C., Karwaczyn´ska, U., & Ciesielczuk, T. (2011). Moz˙liwos´ci wykorzystania odpadów organicznych i mineralnych z uwzglednieniem zasad obowiazujacych w ochronie s´rodowiska (Possibilities of using organic and mineral waste, regarding the principles applicable in environmental protection). Rocz. Ochr. Srodowiska, 13, 361–376.

Sreekrishnan, T., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques - a review. Bioresource Technol., 95(1), 1-10.

Suocheng, D., Tong, K.W., & Yuping, W. (2011). Municipal solid waste management in China: Using commercial management to solve a growing problem. Util. Policy, 10, 7–11.

Themelis, N. J., & Ulloa, P. A. (2007). Methane generation in landfills. Renew. Energ., 32(7), 1243-1257.

United Nations. (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Department of Economic and Social Affairs, Population Division., 241.

Uzodinma, E. O. U., Ofoefule, A. U., & Eze, J. I. and Onwuka N. D. (2007). Optimum mesophilic temperature of biogas production from blends of agro-based wastes. Trends in Applied Sc. Research, 2, 39-44.

Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technol., 99(17), 7928-7940.

Weiland, P. (2006). Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng. Life Sci., 6(3), 302-309.

Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technol., 98(1), 130-134.

Ziauddin, Z., & Rajesh, P. (2015). Production and analysis of biogas from kitchen waste. Int. Research J. of Engg. and Tech., 2 (4), 622-632.

Downloads

Published

2025-06-23

How to Cite

Al Mamun, M. R., Dey , S. R., Jahan, J., & Haque, M. A. (2025). Role of Inoculum Source in Bio-Methane Production From Tea Waste and Fish Residues Using Methanogenesis Anaerobic Co-Digestion Process. American Journal of Agricultural Science, Engineering, and Technology, 9(2), 60–67. https://doi.org/10.54536/ajaset.v9i2.4315

Most read articles by the same author(s)