Evaluating the Impact of Gliricidia sepium-Based Alley Cropping Practices on Growth and Yield of Stem Amaranth
DOI:
https://doi.org/10.54536/ajaset.v9i1.4183Keywords:
Agroforestry, Alley cropping, Gliricidia sepium, Stem amaranth, YieldAbstract
Field experiments were performed to study the feasibility of growing stem amaranth in alley cropping system under different alley widths and nitrogen (N) doses. The experiments were set up following split-plot design with three replications. Three alley widths of Gliricidia sepium viz. 3.0 m, 4.5 m, and 6.0 m (W3.0, W4.5, and W6.0) comprised the main plot treatment, and five nitrogen (N) doses viz. N0, N25, N50, N75, and N100 (0%, 25%, 50%, 75%, and 100% of recommended N doses, including pruned biomass from G. sepium) were distributed as sub-plot treatments. Control plots (without tree) received allied N doses but no pruned material was added. The findings showed that, yield and most of the yield attributes of stem amaranth were found higher in alley cropped plots compared to the control. It was found that, the 3.0, 4.5, and 6.0 m alley widths provided 32, 52 and 68% higher yields of stem amaranth compared to the control (without trees). Gliricidia sepium-established alley cropping augmented the crop yields, where the highest stem amaranth yield (55.57 t ha‒1) was recorded in 6.0 m alley width with 100% N dose which was statistically similar to 75% and 50% N doses in the wider alley width (6.0 m). The above findings suggest that Gliricidia sepium-based alley cropping is a potential approach for increasing crop productivity and reducing synthetic N fertilizer use.
Downloads
References
Ahammed, A. U., Rahman, M. M., & Karim, A. J. M. S. (2015). Response of stem amaranth to different levels of nitrogen, phosphorus, and potassium. Annals of Bangladesh Agriculture, 19(2), 11–21.
Ahmed, S., Chowdhury, A. H. M. R. H., Ghosh, S. C., Islam, S. M. A. S., & Parven, A. (2010). Performance of tomato, brinjal, and cabbage in alley cropping system as affected by four tree species and levels of nitrogen in upland ecosystem. Journal of Soil Nature, 4(1), 17–24.
Ahmmed, S., Jahiruddin, M., Razia, M. S. (2018). Fertilizer recommendation guide (223). Bangladesh Agricultural Research Council, BARC.
Akter, A., Hoque, F., Mukul, A. Z. A., Kamal, M. R., & Rasha, R. K. (2016). Financial analysis of winter vegetable production in a selected area of Brahmanbaria district in Bangladesh. International Research Journal of Agricultural and Food Sciences, 1(6), 120–127.
Azad, A. K., Goshwami, B. K., Rahman, M. L., Malakar, P. K., Hasan, M. S., & Rahman, M. H. H. (2017). Handbook on agro technology (7th ed.). Bangladesh Agricultural Research Institute, BARI.
Bai, S. H., Trueman, S. J., Nevenimo, T., Hannet, G., Bapiwai, P., Poienou, M., & Wallace, H. M. (2017). Effects of shade-tree species and spacing on soil and leaf nutrient concentrations in cocoa plantations at 8 years after establishment. Agriculture, Ecosystems & Environment, 246, 134–143.
Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z. Y., Ok, Y. S., & Vithanage, M. (2017). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health, 39, 391–401.
Basak, S., Mondol, M. A., Ibrahim, M. K., Sharif, M. O., & Wadud, M. A. (2011). Performance of crops during hedge establishment period of alley cropping. Journal of Agroforestry and Environment, 5(1), 55–58.
Bangladesh Bureau of Statistics (BBS). (2022a). Statistical Yearbook of Bangladesh. Bangladesh Bureau of Statistics, Ministry of Planning, Government of the People's Republic of Bangladesh.
Bangladesh Bureau of Statistics (BBS). (2022b). Yearbook of Agricultural Statistics of Bangladesh (34th ed.). Chapter 05: Land Use Statistics (pp. 425–426). Statistics and Informatics Division, Ministry of Planning, Government of the People's Republic of Bangladesh.
Bangladesh Bureau of Statistics (BBS). (2022c). Population & Housing Census 2022 Preliminary Report. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Government of the People's Republic of Bangladesh.
Braga, Í. D. O., Carvalho da Silva, T. L., Belo Silva, V. N., Rodrigues Neto, J. C., Ribeiro, J. A. D. A., Abdelnur, P. V., & Souza Jr, M. T. (2022). Deep untargeted metabolomics analysis to further characterize the adaptation response of Gliricidia sepium (Jacq.) Walp. to very high salinity stress. Frontiers in Plant Science, 13, 869105.
Brammer, H. (1996). The geography of the soils of Bangladesh (1st ed.). University Press Limited.
Cline, M. G. (1991). Apical dominance. The Botanical Review, 57, 318–358.
Coe, R., Njoloma, J., & Sinclair, F. (2019). Loading the dice in favour of the farmer: Reducing the risk of adopting agronomic innovations. Experimental Agriculture, 55(S1), 67–83.
Coser, T. R., de Figueiredo, C. C., Jovanovic, B., Moreira, T. N., Leite, G. G., Cabral Filho, S. L. S., & Marchão, R. L. (2018). Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah. Agricultural Systems, 166, 184–195.
Das, A. K., Rahman, M. A., Rahman, M. M., Saha, S. R., Keya, S. S., Suvoni, S. S., & Rizvi, J. (2022a). Scaling up of jujube-based agroforestry practice and management innovations for improving efficiency and profitability of land uses in Bangladesh. Agroforestry Systems, 96(2), 249-263.
Das, A. K., Rahman, M. A., Mitra, P., Sukhwani, V., Shaw, R., Mitra, B. K., & Morey, B. (2022b). Up-scaling organic agriculture to enhance food and water security in South Asia. Organic Agriculture, 12(4), 475-494.
de Moura‐Silva, A. G., Aguiar, A. D. C. F., de Moura, E. G., & Jorge, N. (2016). Influence of soil cover and N and K fertilization on the quality of biofortified QPM in the humid tropics. Journal of the Science of Food and Agriculture, 96(11), 3807-3812.
Dinesh, R., Srinivasan, V., Hamza, S., Parthasarathy, V. A., & Aipe, K. C. (2010). Physico-chemical, biochemical and microbial properties of the rhizospheric soils of tree species used as supports for black pepper cultivation in the humid tropics. Geoderma, 158(3-4), 252-258.
do Rego Barros, F. M., Fracetto, F. J. C., Junior, M. A. L., Bertini, S. C. B., & Fracetto, G. G. M. (2021). Spatial and seasonal responses of diazotrophs and ammonium-oxidizing bacteria to legume-based silvopastoral systems. Applied Soil Ecology, 158, 103797.
Ferdush, J., Karim, M. M., Noor, I. J., Jui, S. A., Ahamed, T., & Saha, S. R. (2019). Impact of alley cropping system on soil fertility. International Journal of Advanced Geosciences, 7(2), 173–178.
Hasan, M. M., Islam, M. M., & Rahman, H. M. S. (2014). Performance of kangkong and Indian spinach in ipil-ipil based alley cropping system. Journal of Agroforestry and Environment, 8(1), 99–103.
Hombegowda, H. C., Adhikary, P. P., Jakhar, P., & Madhu, M. (2022). Alley cropping agroforestry system for improvement of soil health. In P. K. Shit, P. P. Adhikary, G. S. Bhunia, & D. Sengupta (Eds.), Soil health and environmental sustainability: Application of geospatial technology (pp. 529–549). Springer International Publishing.
Islam, M. M., Hasan, M. M., & Wadud, M. A. (2014). Performance of amaranth and red amaranth in alley cropping system. Journal of Agroforestry and Environment, 8(1), 11–15.
Koyejo, A. O., Okpara, D. A., & Agugo, B. A. C. (2023). Effect of alley cropping on soil, maize, and mungbean grown under different maize spatial arrangements and mungbean spacings in southeast Nigeria. Agroforestry Systems, 97(7), 1337–1346.
Medinski, T., & Freese, D. (2012). Soil carbon stabilization and turnover at alley-cropping systems, eastern Germany. In EGU General Assembly Conference Abstracts (p. 9532).
Miah, M. M. U., Uddin, M. H., Miah, M. G., Rahman, M. M., Ahmed, M., & Matsumoto, M. (2022). Changes of soil physical and chemical properties in aonla (Phyllanthus emblica L.) based multistoried agroforestry system. Journal of the Faculty of Agriculture, Kyushu University, 67(1), 39–51.
Mng’omba, S. A., Akinnifesi, F. K., Kerr, A., Salipira, K., & Muchugi, A. (2017). Growth and yield responses of cotton (Gossypium hirsutum) to inorganic and organic fertilizers in southern Malawi. Agroforestry Systems, 91, 249–258.
Mondal, S., Miah, M. G., Elahi, N. E., Saleque, M. A., & Rahman, A. (2013). Effect of nitrogen levels and Gliricidia sepium alley widths on rice-based agroforestry systems. Bangladesh Rice Journal, 17(1 & 2), 26–32.
Naser, M. M., Swapan, M. S. H., Ahsan, R., Afroz, T., & Ahmed, S. (2019). Climate change, migration, and human rights in Bangladesh: Perspectives on governance. Asia Pacific Viewpoint, 60(2), 175–190.
Nyirenda, H. (2019). Achieving sustainable agricultural production under farmer conditions in maize-Gliricidia intercropping in Salima District, central Malawi. Heliyon, 5(10), e02632.
Partey, S. T., Zougmore, R. B., Thevathasan, N. V., & Preziosi, R. F. (2019). Effects of plant residue decomposition on soil N availability, microbial biomass, and β-glucosidase activity during soil fertility improvement in Ghana. Pedosphere, 29(5), 608–618.
Pingki, L. S., Ahamed, T., Miah, M. M. U., Khan, M. A. R., Suhag, M., & Mondal, S. (2023). Growth and yield of cabbage in aonla-based multistoried agroforestry. Annals of Plant Science, 12(10), 6038–6048.
Rahman, M. A., Miah, M. G., & Yahata, H. (2009). Maize production and soil properties change in alley cropping system at different nitrogen levels. The Agriculturists, 7(1 & 2), 41–49.
Rahman, A. R., Rahman, M. A., Miah, M. G., Hoque, M. A., & Rahman, M. M. (2018). Productivity and profitability of jackfruit-eggplant agroforestry system in the terrace ecosystem of Bangladesh. Turkish Journal of Agriculture - Food Science and Technology, 6(2), 124–129.
Rahman, M. A., Das, A. K., Al Riyadh, Z., Suhag, M., & Rahman, M. M. (2024). Eucalyptus in agriculture: Friend or foe? Analyzing its impact on crop yields, soil dynamics, and farmers’ perceptions in Bangladesh. Agroforestry Systems, 98, 3109–3128.
Rita, T. Y., Saha, S. R., Miah, M. M. U., Hoque, M. A., Al Riyadh, Z., Ahammed, S., & Suhag, M. (2024). Productivity and profitability assessment of stem amaranth and changes in soil chemical properties under aonla-based multistoried agroforestry. European Journal of Agriculture and Food Sciences, 6(6), 40–49.
Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2014). Genotypic variability for nutrient, antioxidant, yield, and yield-contributing traits in vegetable amaranth. Journal of Food Agriculture and Environment, 12(3 & 4), 168–174.
Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2018). Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional, and agronomic traits. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 68(1), 67–76.
Sirohi, C., Dhillon, R. S., Chavan, S. B., Handa, A. K., Balyan, P., Bhardwaj, K. K., & Ahlawat, K. S. (2022). Development of poplar-based alley crop system for fodder production and soil improvements in semi-arid tropics. Agroforestry Systems, 96(4), 731–745.
Tuan, V. D., Hilger, T., MacDonald, L., Clemens, G., Shiraishi, E., Vien, T. D., & Cadisch, G. (2014). Mitigation potential of soil conservation in maize cropping on steep slopes. Field Crops Research, 156, 91–102.
United Nations (UN). (2019). World population prospects and probabilistic population projections based on the world population prospects. United Nations Department of Economic and Social Affairs, Population Division.
Wartenberg, A. C., Blaser, W. J., Gattinger, A., Roshetko, J. M., Van Noordwijk, M., & Six, J. (2017). Does shade tree diversity increase soil fertility in cocoa plantations? Agriculture, Ecosystems & Environment, 248, 190–199.