Exploring Artificial Intelligence and Machine Learning in Precision Agriculture: A Pathway to Improved Efficiency and Economic Outcomes in Crop Production
DOI:
https://doi.org/10.54536/ajaset.v8i3.3843Keywords:
Artificial Intelligence, Internet of Things, Machine Learning, Precision Agriculture, RoboticsAbstract
This review analyzes secondary data from academic databases, research articles, and case studies to explore the role of new technologies for precision agriculture (PA) and investigates the value addition that Artificial Intelligence (AI) and Machine Learning (ML) provide to resource use, crop yield, and economic performance. Accordingly, the most of the key applications of AI in PA were related to crop yield prediction, disease detection, and effective water usage. Operating models through AI will analyze much data in real time, thus providing insight into informed decision making by farmers for proactive action against crop challenges like drought or pest attack. Furthermore, IoT devices and remote sensing support continuous monitoring in the delivery of correct data about optimizations of resources with minimal environmental impact. AI-driven robotics further automates all tasks related to planting, harvesting, and pesticide application, improving labor productivity and operational efficiency. This would involve in other issues like implementation costs, data privacy, and general unawareness among farmers of developing areas. Equally important will be ethical issues like ownership of data and loss of jobs. Various case studies in India, China, the United States, and Africa reveal how AI could transform the future of agriculture if integrated into agricultural systems properly to gain higher productivity and sustainability. Improvements in data quality and ethical issues, and increased access by smallholder farmers, will also be part of future research. Eventually, integrating AI with IoT, robotics, and big data analytics could provide high potential to meet global food demand in a sustainable manner.
Downloads
References
Adinarayana, S., Raju, M. G., Srirangam, D. P., Prasad, D. S., Kumar, M. R., & Veesam, S. B. (2024). Enhancing resource management in precision farming through AI-based irrigation optimization. In A. Dey, S. Nayak, R. Kumar & S. N. Mohanty (Eds), How machine learning is innovating today’s world: A concise technical guide (pp. 221-251). Wiley-Scrivener. https://doi.org/10.1002/9781394214167.ch15
Ahmed, M. N., Singh, A. P., Hussain, M. R., Mohammad, A. R., Imran, M. K., & Shahid, D. (2024). Enhancing crop production using artificial intelligence in agricultural revolution. 2024 IEEE 7th World Forum on Internet of Things (WF-IoT), 1, 432-437. 10.1109/ATSIP62566.2024.10638959
Akhter, R., & Sofi, S. A. (2022). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5602-5618. https://doi.org/10.1016/j.jksuci.2021.05.013
Araújo, S. O., Peres, R. S., Ramalho, J. C., Lidon, F., & Barata, J. (2023). Machine learning applications in agriculture: Current trends, challenges, and future perspectives. Agronomy, 13(12), 1-27. https://doi.org/10.3390/agronomy13122976
Bhat, S. A., & Huang, N. F. (2021). Big data and AI revolution in precision agriculture: Survey and challenges. IEEE Access, 9, 110209 – 110222. 10.1109/ACCESS.2021.3102227
Costa, F., Frecassetti, S., Rossini, M., & Staudacher, A.P. (2023). Industry 4.0 digital technologies enhancing sustainability: Applications and barriers from the agricultural industry. Journal of Cleaner Production, 123(1), 3665-3678. https://doi.org/10.1016/j.jclepro.2023.137208
Diaz-Gonzalez, F. A., Vuelvas, J., Correa, C. A., Vallejo, V. E., & Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators–review. Ecological Indicators, 135, 108517. https://doi.org/10.1016/j.ecolind.2021.108517
Florentin, J. M. & Barcellano, E.V. (2024). Indigenous Ecological Knowledge and Systems of Ethnic Farmers Located at Different Altitudinal Locations along Agno River, Philippines. American Journal of Agricultural Science, Engineering, and Technology (AJASET), 8(3), 31-38. https://doi.org/10.54536/ajaset.v8i3.3347
Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., & Wang, X. (2021). Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies. CAA Journal of Automatica Sinica, 8(2), 245-268. 10.1109/JAS.2021.1003925
Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/jsan13040039
Gikunda, K. (2024). Harnessing artificial intelligence for sustainable agricultural development in Africa: Opportunities, challenges, and impact. arXiv preprint arXiv:2401.06171. https://doi.org/10.48550/arXiv.2401.06171
Islam, M. R., Oliullah, K., Kabir, M. M., Alom, M., & Mridha, M. F. (2023). Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14, 100880. https://doi.org/10.1016/j.jafr.2023.100880
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem, 2(1), 15-30. https://doi.org/10.1016/j.aac.2022.10.001
Jerhamre, E., Carlberg, C. J. C., & Zoest, V. V. (2022). Exploring the susceptibility of smart farming: Identified opportunities and challenges. Smart Agricultural Technology, 5(1), 26-40. https://doi.org/10.1016/j.atech.2021.100026
Jessy, M., Martha, K., & Mirembe, D.P. (2024). Harnessing AI for socio-economic equity in Uganda: Bridging the digital divide through agricultural innovation. International Journal for Multidisciplinary Research, 6(4), 1-14.
Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. https://doi.org/10.3390/agriculture13081593
Lakhiar, I. A., Yan, H., Zhang, C., Wang, G., & Hao, B. (2024). A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture, 13(2), 245-267. https://doi.org/10.3390/agriculture14071141
Lassoued, R., Macall, D. M., Smyth, S. J., & Phillips, P. W. B. (2021). Expert insights on the impacts of, and potential for, agricultural big data. Sustainability, 13(5), 2521. https://doi.org/10.3390/su13052521
Masongsong, J. R, (2024). Environmental awareness and participation among college students of Mindoro State University – Calapan City Campus, American Journal of Environment and Climate (AJEC), 3(1), 25-29. https://doi.org/10.54536/ajec.v3i1.2389
Nath, S. (2024). A vision of precision agriculture: Balance between agricultural sustainability and environmental stewardship. Agronomy Journal, 116(3), 1126-1143. https://doi.org/10.1002/agj2.21405
Oliveira, R. C., & Silva, R. D. S. (2023). Artificial intelligence in agriculture: Benefits, challenges, and trends. Applied Sciences, 13(13), 7405. https://doi.org/10.3390/app13137405
Prajapati, A., Bhuva, K., & Jadav, G. (2023). From threats to solutions: The impact of AI on modern pest management in agriculture. Agrigate Magazine, 3(12): 49-55.
Pugliese, R., Regondi, S., & Marini, R. (2021). Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Science and Management, 2(1), 52-67. https://doi.org/10.1016/j.dsm.2021.12.002
Qazi, S., Khawaja, B. A., & Farooq, Q. U. (2022). IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. IEEE Access, 10, 21219-21235. 10.1109/ACCESS.2022.3152544
Raman, R. K., Kumar, A., Sarkar, S., Yadav, A. K. Mukherjee, A., Meena, R. S., Kumar, U., Singh, D.K., Das, S., Kumar, R., Babu, S., Upadhaya, A., Das, A., Pradhan, K., Chauhan, J. K., & Kumar, V. (2024). Reconnoitering precision agriculture and resource management: A comprehensive review from an extension standpoint on artificial intelligence and machine learning. Indian Research Journal of Extension Education, 24(1), 108-123. 10.54986/irjee/2024/ jan_mar/108-123
Raza, I., Zubair, M., Zaib, M., Khalil, M. H., Haidar, A., Sikandar, A., Abbas, M. Q., Javed, A., Liaqat, M. M., Ain, A. T., Nafees, M., & Ashfaq, M. A. (2023). Precision nutrient application techniques to improve soil fertility and crop yield: A review with future prospect. International Research Journal of Science and Engineering, 5(8), 109-123.
Rhoads, J. (2023). Next-generation precision farming integrating AI and IoT in crop management systems. AI, IoT and the Fourth Industrial Revolution Review, 13(7), 1-9.
Ryan, M. (2023). The social and ethical impacts of artificial intelligence in agriculture: Mapping the agricultural AI literature. AI & Society, 38(6), 2473-2485. https://doi.org/10.1007/s00146-021-01377-9
Senoo, E. E. K., Anggraini, L., Kumi, J. A., Luna, B. K., Ebenezer, A., Hafeez, A. S., Israel, M., & Masayoshi, A. (2024). IoT solutions with artificial intelligence technologies for precision agriculture: Definitions, applications, challenges, and opportunities. Electronics, 13(10),1894. DOI:10.3390/electronics13101894
Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. https://doi.org/10.3390/s19173796
Shaikh, T. A., Mir, W. A., Rasool, T., & Sofi, S. (2022). Machine learning for smart agriculture and precision farming: Towards making the fields talk. Archives of Computational Methods in Engineering, 29(7), 4557-4597. https://doi.org/10.1007/s11831-022-09761-4
Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843-4873. DOI: 10.1109/ACCESS.2020.3048415
Sharma, A., Sharma, A., Tselykh, A., Bozhenyuk, A., Choudhury, T., Alomar, M.A., & Sánchez-Chero, M. (2023). Artificial intelligence and internet of things-oriented sustainable precision farming: Towards modern agriculture. Open Life Sciences, 18(1), 713-727.
Shet, A. P., & Shekar, P. (2020). Artificial intelligence and robotics in the field of agriculture. ResearchGate, 23(1), 78-92.
Soussi, A., Zero, E., Sacile, R., Trinchero, D., & Fossa, M. (2024). Smart sensors and smart data for precision agriculture: A review. Sensors, 24(8), 2647. https://doi.org/10.3390/s24082647
Sudhakar, M., & Priya, R. M. (2023). Computer vision-based machine learning and deep learning approaches for identification of nutrient deficiency in crops: A survey. Nature Environment and Pollution Technology, 22(3), 1387-1399. https://doi.org/10.46488/NEPT.2023.v22i03.025
Waseem, M., Raza, A., & Malik, A. (2024). AI-driven crop yield prediction and disease detection in agroecosystems. In B. Singh, C. Kaunert & K. Vig (Eds.), Maintaining a sustainable world in the nexus of environmental science and AI (pp. 229-258). IGI Global. DOI: 10.4018/979-8-3693-6336-2.ch009



