A Review on the Current Status and Emerging Trends in the Utilization of Fish Feed Additives for Sustainable Production of Oreochromis Niloticus

Authors

  • Md. Hashibur Rahman Bangladesh Fisheries Research Institute, Headquarters, Mymensingh, Bangladesh
  • Mohammad Ashraful Alam Bangladesh Fisheries Research Institute, Riverine Station, Chandpur, Bangladesh
  • Flura Bangladesh Fisheries Research Institute, Riverine Station, Chandpur, Bangladesh
  • Md. Moniruzzaman Bangladesh Fisheries Research Institute, Riverine Station, Chandpur, Bangladesh
  • Shayla Sultana Mely Bangladesh Fisheries Research Institute, Headquarters, Mymensingh, Bangladesh
  • Sharmin Sultana Bangladesh Fisheries Research Institute, Freshwater Station, Mymensingh, Bangladesh
  • Md. Rakibul Islam Bangladesh Fisheries Research Institute, Freshwater Sub-station, Jashore, Bangladesh

DOI:

https://doi.org/10.54536/ajaas.v2i2.1955

Keywords:

Feed Additives, Digestibility, Attractants, Stimulants

Abstract

Feed additives are regarded as an essential component of the fish diet during the production of fish feed. The addition of feed additives to fish food is essential for enhancing the growth and immunity of farmed fish. This study’s objective was to conduct a comprehensive review of the Current Status and Trends in the Adoption of these fish feed additives for Sustainable Tilapia production. In this study, an exploratory research design was used to review and comprehend numerous peer-reviewed papers published in national and international publications on issues related to fish feed additives currently used in Tilapia aquaculture production and the current and future prospects of essential fish feed additives. Feed additives are ingredients that are added in minor amounts to fish diets to increase nutrient content and prolong shelf life. Preservatives, binders, feeding stimulants, and food coloring are frequent feed additives. In order to optimize the production of farmed fish, it is necessary to encourage the use of additives as aquaculture expands. The purpose of feed additives in fish feed is to promote healthier and more rapid fish growth in aquaculture. As a result, fish diets must include the proper amounts of feed additives. The findings imply that fish feed without feed additives is analogous to “a vehicle without fuel” and should be regarded as poor fish feed when fed to fish in an aquaculture system. The end consequence will be a low growth rate for fish, decreased disease resistance, and consequently low productivity in an aquaculture production system.

Downloads

Download data is not yet available.

References

Adéyèmi, A. D., Kayodé, A. P. P., Chabi, I. B., Odouaro, O. B. O., Nout., M. J. R., Linnemann, A. R. (2020). Screening local feed ingredients of Benin, West Africa, for fish feed formulation. Aquaculture Reports, 17. https://doi.org/ 10.1016/j.aqrep.2020.100386

Afolabi, O. A., Oshuntogun, B. A., Adewusi, S. R., Fapojuwo, O. O., Ayorinde, F. O., Grissom, F. E. (1985). Preliminary nutritional and chemical evaluation of raw seeds from mucuna Solanei: An underutilized food source. Journal of Agricultural and Food Chemistry, 33(1), 122-4. https://doi.org/10.1021/JF00061A035

Alfiansah, Y. R., Harder, J., Slater, M. J., Gärdes. (2022). Addition of molasses ameliorates water and bio-floc quality in shrimp pond water. Tropical Life Sciences Research, 33(1), 121-41. https://doi.org/10.21315/TLSR2022.33.1.8, PMID 35651640.

Baker, R. T. M. & Davies, S. J. (1997). Modulation of tissue cc-tocopherol in African catfish, Clarias gariepinus (Burchell), fed oxidized oils, and the compensatory effect of supplemental dietary vitamin E. Aquaculture Nutrition, 3(2), 91-7. https://doi.org/10.1046/J.1365-2095.1997. 00078.X

Basavaraja, N. (2015). Recent developments in Indian aquaculture. Fish Chim, 34(12), 24-8.

Basavaraja, N., Raghavendra, CH. (2017). Hormonal sex reversal in red Tilapia (Oreochromis niloticus and Oreochromis mossambicus) and inheritance of body colour in O. mossambicus and red Tilapia: implications for commercial farming. Aquaculture International, 25(3), 1317-31. https://doi.org/10.1007/s10499-017-0116-3

Behrends, LL., Nelson, RG., Smitherman, RO., Stone, NM. (1982). Breeding AND culture OF the RED‐GOLD color phase OF Tilapia. Journal of the World Mariculture Society, 13(1-4), 210-20. https://doi.org/10.1111/J.1749- 7345. 1982.TB00028.X

Bijoy, V. M., Sabu, S. & Harikrishnan, M. (2018). Fish meal replacement with squilla (Oratosquillanepa, Latreille) silage in a practical diet for the juvenile giant freshwater prawn, Macrobrachium rosenbergiide man, 1879. Aquaculture International, 26(5), 1229-45. https://doi.org/10.1007/s10499-018-0280-0

Brown, PB. & Robinson, EH. (1992). Vitamin D studies with channel catfish (Ictalurus punctatus) reared in calcium-free water. Physiology, 103(1), 213-9. https://doi.org/10.1016/0300-9629(92)90265-R

Cano-Lozano, JA., Villamil Diaz, LM., Melo Bolivar, JF., Hume, ME., Ruiz Pardo, RY. (2022). Probiotics in Tilapia (Oreochromis niloticus) culture: Potential probiotic Lactococcus lactis culture conditions. Journal of Bioscience and Bioengineering, 133(3), 187-94. https://doi.org/10.1016/j.jbiosc.2021.11.004, PMID 34920949.

Dang, ZC., Arena, M. & Kienzler, A. (2021). Fish toxicity testing for the identification of thyroid-disrupting chemicals. Environmental Pollution, 284, 117374. https://doi.org/10.1016/j.envpol.2021.117374, PMID 34051580.

De Araújo, ERL., Barbas, LAL., Ishikawa, CM., de Carla Dias, D., Sussel, FR., de Almeida Marques, HL. (2018). Prebiotic, probiotic, and synbiotic in the diet of Nile Tilapia post- larvae during the sex reversal phase. Aquaculture International, 26(1), 85-97. https://doi.org/10.1007/s10499-017-0201-7

Deng, J., Bi, B., Kang, B., Kong, L., Wang, Q., Zhang, X. (2013). Improving the growth performance and cholesterol metabolism of Rainbow Trout (Oncorhynchus mykiss) fed soyabean meal-based diets using dietary cholesterol supplementation. British Journal of Nutrition, 110(1), 29-39. https://doi.org/10.1017/S0007114512004680, PMID 23182370.

Deng, J., Zhang, X., Long, X., Tao, L., Wang, Z. & Niu, G. (2014). Effects of dietary cholesterol supplementation on growth and cholesterol metabolism of Rainbow Trout (Oncorhynchus mykiss) fed diets with cottonseed meal or rapeseed meal. Fish Physiology and Biochemistry, 40(6), 1827-38. https://doi.org/10.1007/S10695-014-9971-2, PMID 25119853.

Désiré, A. A., Polycarpe, K. A. P., Morelle, A. I., Bienvenue, C. I., Rob, N. M. J. & Linnemann, A. R. (2022). Performance of sustainable fish feeds in Benin for Clarias gariepinus (Burchell 1822). Egyptian Journal of Aquatic Research. https://doi.org/10.1016/j.ejar.2022.09.002

El-Kady, A. A., Magouz, F. I., Mahmoud, S. A. & Abdel-Rahim, M. M. (2022). The effects of some commercial probiotics as water additives on water quality, fish performance, blood biochemical parameters, expression of growth and immune-related genes, and histology of Nile Tilapia (Oreochromis niloticus). Aquaculture, 546. https://doi.org/10.1016/j.aquaculture.2021.737249

Etta, H. E., Bassey, U. P., Eneobong, E. E. & Okon, O. B. (2009). Anti-spermatogenic effects of ethanol extract of Mucuna urens. Journal of Reproduction and Contraception, 20(3),161-8. https://doi.org/10.1016/S1001-7844(09)60021-3

FAO. (2022). Towards Blue transformation. State of World Fisheries and Aquaculture; 2022.

Fitzgerald, W. (1979). The red-orange Tilapia: A hybrid that could become a world favorite. Fish Farming International, 6(1), 26-7.

Flefil, N. S., Ezzat, A., Aboseif, A. M. & Negm E. D. A. (2022). Lactobacillus-fermented wheat bran, as an economic fish feed ingredient, enhanced deproteinization, micronutrient bioavailability, and Tilapia performance in a biofloc system. Biocatalysis and Agricultural Biotechnology, 45. https://doi.org/10.1016/J.BCAB.2022.102521

Fraser, D. R. (2018). Evolutionary biology: mysteries of vitamin D in fish. Vitamin D. (4th ed.), 1, 13-27. https://doi.org/ 10.1016/B978-0-12-809965-0.00002- 1

Gabriel, N. N. (2019). Review the progress in the role of herbal extracts in Tilapia culture. Cogent Food and Agriculture, 5(1). https://doi.org/10.1080/23311932.2019.1619651

Gabriel, N. N., Qiang, J., Ma, X. Y., He, J., Xu, P., & Omoregie, E. (2017). Sex-reversal effect of dietary Aloe vera (Liliaceae) on genetically improved farmed Nile Tilapia fry. North American Journal of Aquaculture, 79(1), 100-105. https://doi.org/10.1080/15222055.2016.1236046

Genschick, S., Mekkawy, W., Rossignoli, C. & Benzie, JAH. (2021). Growth performance of three strains of Nile Tilapia (Oreochromis niloticus) on four different feeds in Western and Central Kenya. Aquaculture Reports. 20. https://doi.org/10.1016/j.aqrep.2021.100701

Guimarães, M. C., Dias, D. C., Von, A. A. P., Ishikawa, C. M. & Tachibana, L. (2019). Probiotic bacillus subtilis AND lactobacillus plantarum In Diet of nilf Tilapia. Boletim Institute the Pesca, 45(1). https://doi.org/ 10.20950/1678-2305.2019.45.1.252

Harikrishnan, R., Thamizharasan, S., Devi, G., Van Doan, H., Ajith Kumar, TT. & Hoseinifar, SH. (2020). A dried lemon peel enriched diet improves antioxidant activity, and immune response and modulates immuno- antioxidant genes in Labeorohita against Aeromonas sorbia. Fish and Shellfish Immunology, 106, 675-84. https://doi.org/10.1016/J.FSI.2020.07.040, PMID 32858188.

Hearn, T. L., Sgoutas, S. A., Hearn, J. A. & Sgoutas, D. S. (1987). Polyunsaturated fatty acids and fat in fish flesh for selecting species for health benefits. Journal of Food Science, 52(5), 1209-11. https://doi.org/10.1111/J.1365- 2621. 1987.TB14045.X

Hernández, E., Figueroa, J. & Iregui, C. (2009). Streptococcosis on a red Tilapia, Oreochromis sp., farm: A case study. Journal of Fish Disease, 32(3), 247-52. https://doi.org/10.1111/J.1365-2761.2008. 00981.X, PMID 19236558.

Higgs, D. A., Fagerlund, U. H. M., Eales, J. G. & McBride, J. R. (1982). Application of thyroid and steroid hormones as anabolic agents in fish culture. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 73(1),143-76. https://doi.org/10.1016/0305-0491(82)90206-1.

Hishamunda, N. & Ridler, NB. (2006). Farming fish for profits: A small step towards food security in sub-Saharan Africa. Food Policy, 31(5), 401-14. https://doi.org/10.1016/J.FOODPOL.2005.12.004.

Hoseinifar, S. H., Sun, Y. Z. & Caipang, C. M. (2017). Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquaculture Research, 48(4):1380-91. https://doi.org/10.1111/ARE.13239.

Hossain, M. I., Haque, N., Alam, A. S. A. F., Begum, H. & Mokhtar, M. B. (2019). Bin. Turkish Journal of Fisheries and Aquatic Sciences, 19(1). https://doi.org/10.4194/1303-2712-v19_1_08

Karapanagiotidis, I. T., Metsoviti, M. N., Gkalogianni, E. Z., Psofakis, P., Asimaki, A. & Katsoulas, N. (2022). The effects of replacing fish meal by Chlorella vulgaris and fish oil by Schizochytrium sp. and Microchloropsis gaditana blend on growth performance, feed efficiency, muscle fatty acid composition, and liver histology of gilthead sea bream (Sparus aurata). Aquaculture, 561. https://doi.org/10.1016/j.aquaculture.2022.738709

Khanjani, M. H., Alizadeh, M., Mohammadi, M. & Aliabad, H. S. (2021). The effect of adding molasses at different times on the performance of Nile Tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Annals of Animal Science, 21(4), 1435-54. https://doi.org/ 10.2478/AOAS-2021-0011

Khorshidi, Z., Paknejad, H., Sodagar, M., Hajimoradloo, A. & Shekarabi S. P. H. (2022). Effect of a commercial multi-effect additive (Biotronic® Top3) on growth performance, digestive enzymes, and intestinal barrier gene expression in common carp (Cyprinus carpio). Aquaculture, 560, 738588. https://doi.org/10.1016/J.AQUACULTURE.2022.738 588

Kord, M. I., Maulu, S., Srour, T. M., Omar, E. A., Farag, A. A. & Nour, A. A. M. (2022). Impacts of water additives on water quality, production efficiency, intestinal morphology, gut microbiota, and immunological responses of Nile Tilapia fingerlings under a zero-water-exchange system. Aquaculture, 547. https://doi.org/10.1016/j.aquaculture.2021.737503

Kumar, S., Sándor, J. Z., Biró, J., Gyalog, G. & Kumar, S. (2022). Does nutritional history impact future performance and utilization of plant-based diet in common carp? Aquaculture, 551. 737935. https://doi.org/ 10.1016/J.Aquaculture.2022.737 935.

Lin, H., Jia, Y., Han, F., Xia, C., Zhao, Q. & Zhang, J. (2022). Toxic effects of waterborne benzylparaben on the growth, antioxidant capacity, and lipid metabolism of Nile Tilapia (Oreochromis niloticus). Aquatic Toxicology, 248, 106197. https://doi.org/10.1016/j.aquatox.2022.106197, PMID 35623196.

Lin, Y. H. & Shiau, S. Y. (2007). Effects of a dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquaculture Nutrition, 13(2), 137-44. https://doi.org/10.1111/J.1365-2095.2007. 00458.X

Liu, Y., Jiao, J. G., Gao, S., Ning, L. J., Mchele, L. S. & Qiao, F. (2019). Dietary oils modify lipid molecules and nutritional value of fillet in Nile Tilapia: A deep lipidomics analysis. Food Chemistry, 277, 515-23. https://doi.org/10.1016/j.foodchem.2018.11.020, PMID 30502178.

Lock, E-J., Waagb, Ø., Wendelaar, B. S. & Flik, G. (2010). The significance of vitamin D for fish: A review. Aquaculture Nutrition, 16(1), 100-16. https://doi.org/10.1111/J.1365-2095.2009. 00722.X

Luo, G., Xu, J., Teng, Y., Ding, C. & Yan B. (2010). Effects of dietary lipid levels on the growth, digestive enzyme, feed utilization, and fatty acid composition of Japanese sea bass (Lateolabrax japonicus L.) reared in freshwater. Aquaculture Research, 41(2), 210-9. https://doi.org/10.1111/J.1365-2109.2009. 02319.X

Mamdouh, A. Z., Zahran, E., Mohamed, F. & Zaki, V. (2021). Nannochloropsisoculata feed additive alleviates mercuric chloride-induced toxicity in Nile Tilapia (Oreochromis niloticus). Aquatic Toxicology, 238: 105936. https://doi.org/10.1016/j.aquatox.2021.105936, PMID 34388370.

Mohammadi, G., Hafezieh, M., Karimi, A. A., Azra, M. N., Van Doan, H. & Tapingkae, W. (2022). The synergistic effects of plant polysaccharide and Pediococcus acidilactici as a synbiotic additive on growth, antioxidant status, immune response, and resistance of Nile Tilapia (Oreochromis niloticus)against Aeromonas hydrophila. Fish and Shellfish Immunology, 120:304-13. https://doi.org/10.1016/j.fsi.2021.11.028, PMID 34838702.

Mukherjee, D., Ghosal, I. & Chakraborty, S. B. (2015). Production of monosex Nile Tilapia, Oreochromis niloticus using seed of Mucuna pruriens. IOSR Journal of Pharmacy and Biological Sciences, 10(1).

Mukhopadhyay, P. K. & Rout, S. K. (1996). Effects of different dietary lipids on growth and tissue fatty acid changes in fry of the carp Catla catla (Ham). Aquaculture Research, 27(8), 623-30. https://doi.org/10.1111/J.1365- 2109. 1996.TB01295.X/ABSTRACT

Mukhopadhyay, S. (2021). Synthetic AND systems biology methods for application in gene circuits AND microgravity-related space biology. Biosens Bioelectron, 1(167), 112462. https://doi.org/10.1016/j.bios.2020.112462.

Nuhu, O.B. (2013). Growth performance, haematological indices and some biochemical enzymes of juveniles Clarias gariepinus (Burchell 1822) Fed Varying Levels of Moringa oleifera Leaf Meal Diet. https://doi.org/10.4172/2155-9546.1000166

Oglend, A. (2020). Challenges and opportunities with aquaculture growth. https, 24(2), 123-7. https://doi.org/ 10.1080/13657305.2019.1704937

Ojha, M., Chadha, N., Saini, V., Damroy, D. S., Sawant, P. & Damroy. (2014). Role of Pedalium murex in the enhancement of growth, metabolism, and immunity of Labeo rohita (Hamilton, 1822) fingerlings. 70 ~ International Journal of Fauna and Biological Studies., 1(6), 70-7.

Okomoda, VT., Tiamiyu, LO. & Akpan, IS. (2017). Nutritional evaluation of toasted Mucuna utilise seed meal and its utilization in the diet of Clarias gariepinus (Burchell, 1822), 29(2), 167-82. Available:http://dx.doi.org/10.1080/10454 438.2017.1278733 https://doi.org/ 10.1080/10454438.2017.1278733

Oliveira, L. K., Pilz, L., Furtado, P. S., Ballester, E. L. C. & Bicudo, Á. A. (2021). Growth, nutritional efficiency, and profitability of juvenile GIFT strain of Nile Tilapia (Oreochromis niloticus) reared in bio floc system on graded feeding rates. Aquaculture, 541. https://doi.org/10.1016/j.aquaculture.2021.736830

Opiyo, M. A., Jumbe, J., Ngugi, C. C. & Charo- Karisa, H. (2019). Different levels of probiotics affect the growth, survival, and body composition of Nile Tilapia (Oreochromis niloticus) cultured in low-input ponds. Scientific African, 4. https://doi.org/10.1016/J.SCIAF. 2019.E00103

Opiyo, M. A., Marijani, E., Muendo, P., Odede R, L. W. & Charo-Karisa, H. (2018). A review of aquaculture production and health management practices of farmed fish in Kenya. International Journal of Veterinary Science and Medicine, 6(2), 141-8. https://doi.org/10.1016/j.ijvsm.2018.07.001, PMID 30564588.

Owatari, M. S., da Silva, L. R., Ferreira, G. B., Rodhermel, J. C. B., de Andrade, J. I. A. & Dartora A. (2022). Body yield, growth performance, and hematological evaluation of Nile Tilapia fed a diet supplemented with Saccharomyces cerevisiae. Animal Feed Science and Technology, 293, 115453. https://doi.org/10.1016/j.anifeedsci.2022.115453

Peng, S., Chen, L., Qin, J.G., Hou, J., Yu, N. & Long, Z. (2008). Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black sea bream, Acanthopagrus schlegeli. Aquaculture, 276(1-4), 154-61. https://doi.org/10.1016/J.Aquaculture.2008.01.0 35

Poolsawat, L., Yang, H., Sun, Y. F., Li, X. Q., Liang, G. Y. & Leng, X J. (2021). Effect of replacing fish meal with enzymatic feather meal on growth and feed utilization of Tilapia (Oreochromis niloticus × O. aureus). Animal Feed Science and Technology, 274. https://doi.org/10.1016/J.Anifeedsci.2021.114895

Prabhu, AJP., Schrama, JW., Kaushik, SJ. (2016). Mineral requirements of fish: A systematic review. Reviews in Aquaculture, 8(2), 172-219. https://doi.org/10.1111/RAQ.12090

Prabhu, P. A. J., Lock, E. J., Hemre, G. I., Hamre, K., Espe, M. & Olsvik, P. A. (2019). Recommendations for the dietary level of micro-minerals and vitamin D3 to Atlantic salmon (Salmo salar) parr and post-smolt when fed low fish meal diets. PeerJ., 2019(5). https://doi.org/10.7717/PEERJ.6996

Rohani, M. F., Tarin, T., Hasan, J., Islam, S. M. M. & Shahjahan, M. (2023). Vitamin E supplementation in diet ameliorates the growth of Nile Tilapia by upgrading muscle health. Saudi Journal of Biological Science., 30(2), 103558. https://doi.org/10.1016/j.sjbs.2023.103558, PMID 36712183.

Romero, J., Gloria, C. & Navarrete, P. (2012). Antibiotics in aquaculture – use, abuse, and alternatives. Health and Environment in Aquaculture. https://doi.org/10.5772/28157

Roopma, G. D. S., Vaini, G. R. K., & R. (2015). Effect of fish oil substitution with Sunflower oil in diet of Juvenile catla catla (Ham) on Growth Performance and Feed Utilization. Journal of Fisheries and Livestock Production, 2015(3), 3(3), 1-3. https://doi.org/10.4172/2332-2608.1000144

Saeed, F., Arshad, MU., Pasha, I., Naz, R., Batool, R. & Khan, AA. (2014). The nutritional and phytotherapeutic potential of papaya (Carica papaya Linn.): An overview. International Journal of Food Properties, 17(7), 1637-53. https://doi.org/10.1080/10942912.2012.709210

Saha, S., Ray, A. K., Sümbülü, S., Ununun, Y., Bağırsağından, B. & İki, İ. E. (2011). Evaluation of nutritive value of water hyacinth (Eichhornia crassipes) leaf meal in compound diets for rohu, Labeorohita (Hamilton, 1822) fingerlings after fermentation with two bacterial strains isolated from fish gut. Turkish Journal of Fisheries and Aquatic Sciences, 11(2), 199-207. https://doi.org/10.4194/trjfas.2011.0204

Sarmento, N. L. A. F., Martins, E. F. F., Costa, D. C., Mattioli, C. C., da Costa, J. G. S. & Figueiredo, L. G. (2018). Reproductive efficiency and egg and larvae quality of Nile Tilapia fed different levels of vitamin C. Aquaculture, 482:96-102. https://doi.org/10.1016/j.aquaculture.2017.08.035

Shenouda, S. Y. K. (1980). Theories of protein denaturation during frozen storage of fish flesh. Advances in Food Research, 26(C), 275-311. https://doi.org/10.1016/S0065-2628(08)60320-1

Shore, L. S. & Shemesh, M. (2003). Naturally produced steroid hormones and their release into the environment. Pure and Applied Chemistry, 75(11-12), 1859-71. https://doi.org/10.1351/PAC200375111859

Sørensen, M. (2012). A review of the effects of ingredient composition and processing conditions on the physical qualities of extruded high-energy fish feed as measured by prevailing methods. Aquaculture Nutrition, 18(3), 233-48. https://doi.org/10.1111/J.1365-2095.2011. 00924.X

Straus, D. L., Bowker, J. D., Bowman, M. P., Carty, D. G., Mitchell, A. J., Farmer, B. D. (2013). Safety of feed treated with 17α- methyltestosterone (17MT) to larval Nile Tilapia. North American Journal of Aquaculture, 75(2):212-9. https://doi.org/10.1080/15222055.2012.758211

Syanya, F. J., Munala, M. W. (2022). Moving towards sustainable Aquaculture for Rural sustainability and development in Kenya; A case of Vihiga County.

Syed, R., Masood, Z., Ul Hassan, H., Khan, W., Mushtaq, S. & Ali, A. (2022). Growth performance, hematological assessment, and chemical composition of Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758) fed different levels of Aloe vera extract as feed additives in a closed aquaculture system. Saudi Journal of Biological Science, 29(1), 296-303. https://doi.org/10.1016/J.SJBS.2021.08.098, PMID 35002422.

Tacon, A. G. J. & Metian, M. (2015). Feed matters: satisfying the feed demand of aquaculture. Reviews in Fisheries Science and Aquaculture, 23(1), 1-10. https://doi.org/10.1080/23308249.2014.987209

Tuan, H. Z., Mohd S. S., Remlee, N. F. S., Mohd, S. N., Zakaria, N. N. A. (2022a). Effects of dietary astaxanthin enrichment on enhancing the color and growth of red Tilapia, Oreochromis sp. Aquaculture. 2022a. https://doi.org/10.1016/j.aaf.2022.06.001

Tuan, H. Z., Mohd, S. S., Remlee, N. F. S., Mohd, S. F. N. & Zakaria, N. N. A. (2022b). Effects of dietary astaxanthin enrichment on enhancing the color and growth of red Tilapia, Oreochromis sp. Aquaculture. https://doi.org/ 10.1016/J.AAF.2022.06.001

Van, D. H., Lumsangkul, C., Hoseinifar, S. H., Tongsiri, S., Chitmanat, C. & Musthafa, M. S. (2021). Modulation of growth, innate immunity, and disease resistance of Nile Tilapia (Oreochromis niloticus) culture under biofloc system by supplementing pineapple peel powder and Lactobacillus plantarum. Fish and Shellfish Immunology, 115, 212-20. https://doi.org/10.1016/j.fsi.2021.06.008, PMID 34146675.

Waagbø, R. (2010). Water-soluble vitamins in fish ontogeny. Aquaculture Research, 41(5), 733- 44. https://doi.org/10.1111/J.1365-2109.2009. 02223.X

Waaqi W. M., Taufek, N. M., Thiran, J. P., Rahman, J. F. P., Yerima, G. & Subramaniam, K. (2021). Investigations on the use of exopolysaccharide derived from the mycelial extract of Ganoderma lucidum as a functional feed ingredient for aquaculture-farmed red hybrid Tilapia (Oreochromis sp.). Future Foods, 3. https://doi.org/10.1016/J.FUFO.2021.100018

Wangkahart, E., Kersanté, P., Lee, P. T., Sanbut, O., Nontasan, S. & Chantiratikul, A. (2022). Effect of Kera-Stim®50, a feed additive containing free amino acid mix on growth, antioxidant and immune responses, digestive enzymes, and fatty acid composition in Nile Tilapia (Oreochromis niloticus). Aquaculture, 551. https://doi.org/10.1016/j.aquaculture.2021.737874

Wiszniewski, G., Jarmołowicz, S., Hassaan, M. S., Soaudy, M. R., Kamaszewski, M. & Szudrowicz, H. (2022). Beneficial effects of dietary papain supplementation in juvenile sterlet (Acipenser ruthenus): Growth, intestinal topography, digestive enzymes, antioxidant response, immune response, and response to a challenge test. Aquaculture Reports, 22. https://doi.org/10.1016/j.aqrep.2021.100923

Wohlfarth, G. W., Rothbard, S., Hulata, G. & Szweigman, D. (1990). Inheritance of red body coloration in Taiwanese Tilapias and in Oreochromis mossambicus. Aquaculture, 84(3-4):219-34. https://doi.org/10.1016/0044-8486(90)90088-5

Wu, J. Y., Feng, L., Wu, P., Liu, Y., Ren, H. M. & Jin, X W. (2022). Modification of beneficial fatty acid composition and physicochemical qualities in the muscle of sub-adult grass carp (Ctenopharyngodon idella): The role of lipids. Aquaculture, 561. https://doi.org/10.1016/j.aquaculture.2022.738656

Xu, W., Mawolo, PY., Gao, J., Chu, L., Wang, Y. & Nie, Z. (2021). Effects of supplemental effective microorganisms in feed on the growth, immunity, and appetite regulation in juvenile GIFT Tilapia. Aquaculture Reports, 19. https://doi.org/10.1016/J.AQREP.2020.100577

Yamazaki, F. (1976). Application of hormones in fish culture. Journal of Fisheries Research and Board of Canada, 33(4), 948-58. https://doi.org/10.1139/F76-122

Yossa, R., Greiling, A. M., Basiita, R. K., Sakala, M. E., Baumgartner, W. A. & Taylor, A. (2021). Replacing fishmeal with a single cell protein feedstuff in Nile Tilapia Oreochromis niloticus diets. Animal Feed Science and Technolohy, 281. https://doi.org/10.1016/J.ANIFEEDSCI.2021.115089

Yu, X., Xin, Y., Cui, L., Jia, J., Yuan, X. & Fu, S. (2021b). Effects of neuropeptide Y as a feed additive on stimulating the growth of Tilapia (Oreochromis niloticus) fed low fish meal diets. Peptides. 2021b, 138, 170505. https://doi.org/10.1016/J.Peptides.2021.170505, PMID 33539872.

Zhou, M., Yu, S., Hong, B., Li, J., Han, H. & Qie, G. (2021). Antibiotics control in aquaculture requires more than antibiotic-free feeds: A Tilapia farming case. Environmental Pollution, 268(B),115854. https://doi.org/10.1016/J.ENVPOL.2020.115854, PMID 33120148.

Downloads

Published

2023-09-18

How to Cite

Rahman, M. H., Ashraful Alam, M., Flura, Moniruzzaman, M., Sultana Mely, S., Sultana, S., & Rakibul Islam, M. (2023). A Review on the Current Status and Emerging Trends in the Utilization of Fish Feed Additives for Sustainable Production of Oreochromis Niloticus. American Journal of Aquaculture and Animal Science, 2(2), 26–37. https://doi.org/10.54536/ajaas.v2i2.1955

Most read articles by the same author(s)