Soil Washing to Eliminate Polycyclic Aromatic Hydrocarbons from Petroleum Contaminated Soil - Temperature Effect

Authors

  • Danjuma Muhammad Department of Chemical Engineering, Faculty of Engineering, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria
  • Bintu Grema Mustafa Department of Chemical Engineering, Faculty of Engineering, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria
  • Abdulhalim Musa Abubakar Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B. 2076, Yola, Adamawa State, Nigeria
  • Alfitouri Ibrahim Jellah Oil and Gas Engineering Department, Faculty of Engineering, Bani Waleed University, Libya
  • Abbas Mohamed Al-Khudafi Department of Petroleum Engineering, Hadhramout University, Al-Mukalla, Yemen
  • E. M. Mansour PVT Services Center & PVT Lab, Production Department, Egyptian Petroleum Research Institute, Egypt
  • Mohammed Abdulrahim Department of Chemical Engineering, Faculty of Engineering, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria

DOI:

https://doi.org/10.54536/jir.v1i3.1547

Keywords:

Polycyclic Aromatic Hydrocarbons, Oil Spillage, Soil Washing, Remediation, Petroleum Polluted Soil

Abstract

This study’s goals were to identify the components of polycyclic aromatic hydrocarbons (PAHs) in soil samples polluted with petroleum and to ascertain how temperature affected the removal of PAHs pollutants from petroleum-contaminated soil. The concentration of contaminants in the soil samples decreased from 46.22-12.07 ppm to 77.01-30.06 ppm at a temperature increase of 20–160°C, as shown by the results of this study, which are also supported by the percentage removal efficiencies of 22.22–79.69% and 32.90–73.81% for samples M and S, respectively. It was further discovered that 160℃ was the ideal temperature range for soil washing to eliminate the pollutants. High removal efficiency values demonstrated the efficacy of the soil washing approach in removing pollutants with high PAH concentrations. This information can help in the creation of more successful and affordable soil remediation techniques.

Author Biographies

Bintu Grema Mustafa, Department of Chemical Engineering, Faculty of Engineering, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria

 

 

Abdulhalim Musa Abubakar, Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B. 2076, Yola, Adamawa State, Nigeria

 

 

Alfitouri Ibrahim Jellah, Oil and Gas Engineering Department, Faculty of Engineering, Bani Waleed University, Libya

 

 

Abbas Mohamed Al-Khudafi, Department of Petroleum Engineering, Hadhramout University, Al-Mukalla, Yemen

 

 

E. M. Mansour, PVT Services Center & PVT Lab, Production Department, Egyptian Petroleum Research Institute, Egypt

 

 

References

Abdullahi, E. M., Kamoru, A. S., & Samuel, S. S. (2020). Application of soil washing treatment method for the remediation of petroleum polluted soil. In Handbook of Research on Resource Management for Pollution and Waste Treatment (pp. 476–501). IGI Global. https://doi.org/10.4018/978-1-7998-0369-0.ch020

Abozenadah, H., Bishop, A., Bittner, S., Lopez, O., Wiley, C., & Flatt, P. M. (2017). CH105: Alkanes and halogenated hydrocarbons. In How Organic Chemistry Impacts Our Lives. Western Oregon University Chemistry-Consumer Chemistry.

Abubakar, A. M., & Alhassan, M. (2021). History, adverse effect and clean up strategies of oil spillage. International Journal of Applied Sciences: Current and Future Research Trends (IJASCFRT), 11(1), 31–51. https://doi.org/10.5281/zenodo.5557307

Abubakar, A. M., Iliyasu, B., & Sarkinbaka, Z. M. (2022). Detailed overview on POLYMATH software for chemical engineering analysis. Journal of Engineering Research and Sciences (JENRS), 1(3), 133–147. https://doi.org/https://dx.doi.org/10.55708/js0103014

Abubakar, B. (2017). Origin and meaning of Maiduguri (pp.1–14). https://www.researchgate.net/publication/318215637

Adekunle, A. A., Adekunle, I. M., & Igba, T. (2012). Soil temperature dynamics during bioremediation of petroleum products using remediation agent made from Nigeria local resource materials. International Journal of Engineering Research & Technology (IJERT), 1(4), 1–8. https://doi.org/10.17577/IJERTV1IS4028

Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2018). Analytical methods for polycyclic aromatic hydrocarbons and their global trend of distribution in water and sediment: A review. In M. Zoveidavianpoor (Ed.), Recent Insights in Petroleum Science and Engineering. InTech Open. https://doi.org/10.5772/intechopen.71163

Ahmad, A. A., Muhammad, I., Shah, T., Kalwar, Q., Zhang, J., Liang, Z., Mei, D., Juanshan, Z., Yan, P., Zhi, D. X., & Rui-Jun, L. (2020). Remediation methods of crude oil contaminated soil. World Journal of Agriculture and Soil Science (WJASS), 4(4), 1–8. https://doi.org/10.33552/WJASS.2020.04.000595

Ambust, S., Das, A. J., & Kumar, R. (2021). Bioremediation of petroleum contaminated soil through biosurfactant and pseudomonas sp. SA3 amended design treatments. Current Research in Microbial Sciences, 2(100031). https://doi.org/10.1016/j.crmicr.2021.100031

Aouf, M., & Dounit, S. (2022). Remediation of aged hydrocarbon contaminated soil by washing in fluidized bed column. Archives of Environmental Protection, 48(2), 15–23. https://doi.org/10.24425/aep.2022.140762

Assarsson, K. (2015). Environmental exposure assessment of metals from reclaimed land in Halmstad harbour Sweden: Part of an environmental risk assessment. In J. Tarradellas, G. Bitton, & D. Rossel (Eds.), Soil Ecotoxicology. Lewis Publishers: Applied Environmental Science.

Birmah, M. N., Kigun, P. A., Alfred, Y. B., Majidadi, S. T., & Surajo, L. A. (2021). Flood assessment in Suleja Local Government Area, Niger state, Nigeria. International Journal of Research Publication and Reviews, 2(3), 219–239. www.ijrpr.com

Bonten, L. (2001). Improving bioremediation of PAH contaminated soils by thermal pretreatment (W. H. Rulkens, J. T. C. Grotenhuis, R. Stegmann, S. E. A. T. M. van der Zee, A. J. M. Stams, & H. H. M. Rijnaarts (eds.)). Wageningen University.

Brinkhoff, T. (2022). Suleja Local Government Area in Nigeria. National Population Commission of Nigeria: Nigeria Bureau of Statistics. https://citypopulation.de/en/nigeria/admin/niger/NGA027023_suleja

Chen, S., & Zhong, M. (2019). Bioremediation of petroleum-contaminated soil. In H. Saldarriaga-Noreña, M. A. Murillo-Tovar, R. Farooq, R. Dongre, & S. Riaz (Eds.), Environmental Chemistry and Recent Pollution Conrol Approaches (pp. 1–12). IntechOpen. https://doi.org/10.5772/intechopen.90289

Chiou, C. T., McGroddy, S. E., & Kile, D. E. (2002). Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology, 32, 264–269.

Choi, B., Lee, S., & Jho, E. H. (2020). Removal of TPH, UCM, PAHs, and Alk-PAHs in oil-contaminated soil by thermal desorption. Applied Biological Chemistry, 63(83), 1–6. https://doi.org/10.1186/s13765-020-00569-z

Cora, B., Silvia, N., Diana, M. C., Irina, I., & Adrian, B. (2013). Efficiency of PAHs removal from soils contaminated with petroleum products using ex-situ thermal treatments. Revista de Chimie -Bucharest, 64(12), 1430-1435. http://www.revistadechimie.ro

Darajeh, N., Alizadeh, H., Farraji, H., Park, J., Barghi, A., & Rezania, S. (2020). Removal of polycyclic aromatic hydrocarbons (PAHs) by different physicochemical methods: A mini-review. Journal of Energy and Environmental Pollution, 1(2), 44–50. https://doi.org/10.47277/JEEP/1(2)50

Dike, B. U., Okoro, B. C., Nwakwasi, N. N., & Agbo, K. C. (2013). Remediation of used motor engine oil contaminated soil: A soil washing treatment approach. Journal of Civil and Environmental Engineering, 3(129). https://doi.org/10.4172/2165-784X.1000129

Edgar, H., Lubomir, J., & Mikulas, B. (2008). Effect of temperature on the distribution of polycyclic aromatic hydrocarbons in soil and sediment. Soil and Water Resources, 3(4), 231–240. https://doi.org/10.17221/28/2008-SWR

Ekanem, A. N., Osabor, V. N., & Ekpo, B. O. (2019). Polycyclic aromatic hydrocarbons (PAHs) contamination of soils and water around automobile repair workshops in Eket metropolis, Akwa Ibom state, Nigeria. SN Applied Sciences, 1(447), 1–17. https://doi.org/10.1007/s42452-019-0397-4

Eke, M. N., & Enibe, S. O. (2007). Optimal scheduling of petroleum products distribution in Nigeria. Nigerian Journal of Technology, 26(1), 67–81. https://doi.org/10.4314/njit.261.82

Eldos, H. I., Zouari, N., Saeed, S., & Al-Ghouti, M. A. (2022). Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies. Arabian Journal of Chemistry, 15(7), 1–28. https://doi.org/10.1016/j.arabjc.2022.103918

Funada, M., Nakano, T., & Moriwaki, H. (2018). Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix: Novel soil cleanup technique. Journal of Hazardous Materials, 351, 232–239. https://doi.org/10.1016/j.jhazmat.2018.02.054

Gnida, A., & Turek-Szytow, J. (2023). Calcium preparation aided bioremediation of fluoranthene-contaminated soil. Water Air Soil Pollution, 234(17), 1–16. https://doi.org/10.1007/S11270-022-06017-6

Gupte, A., Tripathi, A., Patel, H., Rudakiya, D., & Gupte, S. (2016). Bioremediation of polycyclic aromatic hydrocarbon (PAHs): A perspective. The Open Biotechnology Journal, 10(Suppl-2, M9), 363–378. https://doi.org/10.2174/1874070701610010363

He, Y., Hu, X., Jiang, J., Zhang, J., & Liu, F. (2022). Remediation of PAHs contaminated industrial soils by hypochlorous acid: Performance and mechanisms. RSC Advances, 12, 10825–10834. https://doi.org/10.1039/d2ra00514j

Hiller, E., Jurkovic, L., & Bartal, M. (2008). Effect of temperature on the distribution of polycyclic aromatic hydrocarbons in soil and sediment. Soil & Water Resource, 3(4), 231–240. https://doi.org/10.17221/28/2008-SWR

Kariyawasam, T., Prenzler, P. D., Howitt, J. A., & Doran, G. S. (2022). Greener extraction of polycyclic aromatic hydrocarbons from soil and sediment using eucalyptus oil. Environmental Chemistry Letters, 20, 2757–2764. https://doi.org/10.1007/s10311-022-01467-0

Kinyua, A., Mbugua, J. K., Mbui, D. N., Kithure, J. L., Wandiga, S. O., & Waswa, A. G. (2022). Microbial fuel cell bio-remediation of Lambda cyhalothrin, malathion, chlorpyrifos on loam soil inoculated with bio-slurry. American Journal of Environment and Climate (AJEC), 1(1), 34–41. https://doi.org/10.54536/ajec.v1i1.249

Lamoj, M. (2022). Laboratory and theoretical investigations of petroleum reservoir fluid properties. American Journal of Energy and Natural Resources (AJENR), 1(1), 1–13. https://journals.e-palli.com/home/index.php/ajenr

Lau, E. V, Gan, S., & Ng, H. K. (2010). Extraction techniques for polycyclic aromatic hydrocarbons in soils. International Journal of Analytical Chemistry, 2010(398381), 1–9. https://doi.org/10.1155/2010/398381

Liu, C., Shi, H., Wang, C., Fei, Y., & Han, Z. (2022). Thermal remediation of soil contaminated with polycyclic aromatic hydrocarbons: Pollutant removal process and influence on soil functionality. Toxics, 10(8), 1–12. https://doi.org/10.3390/toxics10080474

Madadian, E., Gitipour, S., Amiri, L., Alimohammadi, M., & Saatloo, J. (2014). The application of soil washing for treatment of polycyclic aromatic hydrocarbons contaminated soil: A case study in a petrochemical complex. Environmental Progress & Sustainable Energy, 33(1), 107–113. https://doi.org/10.1002/ep.11759

Mehdi, H. S., Moslem, A., & Simone, C. (2015). Biodegradation of aromatic compounds. InTech Open. https://doi.org/10.5772/60894

Onos, E. O., Emmanuel, A. E., Odafe, A. P., & Omorovie, A. S. (2015). Concentration characteristics of polycyclic aromatic hydrocarbons (PAHs) in dept-wise soils, Sapele, Nigeria. International Research Journal of Public and Environmental Health, 2(6), 70–79. https://doi.org/10.15739/irjpeh.023

Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11(562813), 1–23. https://doi.org/10.3389/fmicb.2020.562813

Riskuwa-Shehu, M. L., Ismail, H. V, Fardami, A. Y., & Ibrahim, U. B. (2022). Pennisetum purpureum improved polycyclic aromatic hydrocarbons removal in weathered-petroleum contaminated soil. European Journal of Biology and Biotechnology, 3(3), 7–13. https://doi.org/10.24018/ejbio.2022.3.3.285

Sayara, T., & Sanchez, A. (2020). Bioremediation of PAH-Contaminated soils: Process enhancement through composting/compost. Applied Sciences, 10(3684), 1–20. https://doi.org/10/3390/app10113684

Scott, H. E. M., Aherne, J., & Metcalfe, C. D. (2012). Fate and transport of polycyclic aromatic hydrocarbons in upland Irish headwater lake catchments. The Scientific World Journal, 2012(828343), 1–11. https://doi.org/10.1100/2012/828343

Stepanova, A. Y., Gladkov, E. A., Osipova, E. S., Gladkova, O. V., & Tereshonok, D. V. (2022). Bioremediation of soil from petroleum contamination. In C. Brigido & P. I. Fernandes-Junior (Eds.), Processes (Vol. 10, Issue 1224). MDPI. https://doi.org/10.3390/pr10061224

Tsibart, A. S., & Gennadiev, A. N. (2013). Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (A review). Eurasian Soil Science, 46(7), 728–741. https://doi.org/10.1134/S1064229313070090

Wloka, D., & Smol, M. (2014). Evaluation of extraction methods of polycyclic aromatic hydrocarbons (PAHs) from soil and sewage sludge matrix. Inzynieria i Ochrona Srodowiska, 17(4), 689–702. https://www.researchgate.net/publicagtion/272498559

Zhang, X., Zhang, L., Yang, L., Zhou, Q., Xing, W., Toriba, A., Hayakawa, K., Wei, Y., & Tang, N. (2020). Characteristics of polycyclic aromatic hydrocarbons (PAHs) and common air pollutants at Wajima, a remote background site in Japan. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030957

Downloads

Published

2023-09-28

How to Cite

Muhammad, D., Mustafa, B. G., Abubakar, A. M., Jellah, A. I., Al-Khudafi, A. M., Mansour, E. M., & Abdulrahim, M. (2023). Soil Washing to Eliminate Polycyclic Aromatic Hydrocarbons from Petroleum Contaminated Soil - Temperature Effect. Journal of Innovative Research, 1(3), 1–13. https://doi.org/10.54536/jir.v1i3.1547