Legume Addition to Grass Pastures Improved the Performance and Health Indicators of Kiko Does
DOI:
https://doi.org/10.54536/ijvmas.v2i1.4437Keywords:
Blood Glucose, Blood Urea Nitrogen, Body Condition Score, FAMACHA, Fecal PAbstract
Legume addition to grass pastures is expected to improve forage quality and enhance animal performance; however, such effects on goats are not well published. We hypothesized that legume inclusion in grass pastures would improve the performance and health indicators of grazing goats. The study objective was to evaluate the impact of legume addition to grass pastures on the performance and health indicators of goats. Nineteen yearling Kiko does were divided into legume-grass (Southern peas (Vigna unguiculata (L.) Walp.)-browntop millet (Urochloa ramosa L. Nguyen) (50:50)) and sole-grass (sole browntop millet) groups and rotationally grazed in their assigned plots for 87 days. Forage samples were collected and analyzed for productivity and quality (crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF)). Does’ performance data (live weight, body condition score (BCS), and FAMACHA score) were collected on Day 1, fortnightly, and at the end. Blood samples were collected and analyzed for biochemical and hematological parameters and fecal samples for nutrients (Days 1. 47, 87). Legume-grass pastures showed better quality than sole-grass pastures (p<0.05). Does grazing legume-grass pastures showed better performance (live wt. 5%, FAMACHA score 13%, BCS 4%) vs. sole-grass group (p<0.05). Legume-grass group had higher blood urea nitrogen (BUN), BUN/Creatinine ratio, and glucose on Days 47 and 87, and basophil on Day 47 vs. sole-grass group (p<0.05). On Day 47, fecal P was higher (p<0.05) in legume-grass vs. sole-grass group. Results showed that legumes enriched the pasture quality and eventually enhanced the performance and health indicators of grazing goats.
References
Ahn, J. S., Son, G. H., Kim, M. J., Choi, C. S., Lee, C. W., Park, J. K., ... & Park, B. K. (2019). Effect of total digestible nutrients level of concentrates on growth performance, carcass characteristics, and meat composition of Korean Hanwoo steers. Food science of animal resources, 39(3), 388. https://doi.org/10.5851/kosfa.2019.e32
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in Various Species. Physiological Reviews, 70, 567–590. https://doi.org/10.1152/physrev.1990.70.2.567
Bertilsson, J., & Murphy, M. (2003). Effects of feeding clover silages on feed intake, milk production and digestion in dairy cows. Grass and Forage Science, 58(3), 309–322. https://doi.org/10.1046/j.1365-2494.2003.00383.x
Bricarello, P. A., Amarante, A. F. T., Rocha, R. A., Cabral Filho, S. L., Huntley, J. F., Houdijk, J. G. M., & Gennari, S. M. (2005). Influence of dietary protein supply on resistance to experimental infections with Haemonchus contortus in Ile de France and Santa Ines lambs. Veterinary parasitology, 134, 99-109. https://doi.org/10.1016/j.vetpar.2005.05.068
Catanese, F., Distel, R. A., Iglesias, R. R., & Villalba, J. J. (2010). Role of early experience in the development of preference for low-quality food in sheep. Animal, 4(5), 784-791. https://doi.org/10.1017/S1751731109991637
Chapman, S. E. (2013). Duncan & Prasse’s Veterinary Laboratory Medicine: Clinical Pathology, Kenneth, S. L., (Eds.), Veterinary Clinical Pathology. Wiley‐Blackwell, Ames IA. https://doi.org/10.1111/vcp.12042
Coop, R. L., & Holmes, P. H. (1996). Nutrition and parasite interaction. International Journal for Parasitology, 26(8–9), 951–962. https://doi.org/10.1016/S0020-7519(96)80070-1
Dal Pizzol, J. G., Ribeiro-Filho, H. M. N., Quereuil, A., Le Morvan, A., & Niderkorn, V. (2017). Complementarities between grasses and forage legumes from temperate and subtropical areas on in vitro rumen fermentation characteristics. Animal Feed Science Technology, 228, 178–185. https://doi.org/10.1016/j.anifeedsci.2017.04.020
Dillard, S. L., Wood, C. W., Wood, B. H., Feng, Y., Owsley, W. F., & Muntifering, R. B. (2015). Nitrogen fertilization impacts on Phosphorus cycling in grazed grass-legume pasture. Agricultural Sciences, 6(09), 1115–1127. https://doi.org/10.4236/as.2015.69107
Direkvandi, E., Mohammadabadi, T., & Salem, A. Z. M. (2020). Effect of microbial feed additives on growth performance, microbial protein synthesis, and rumen microbial population in growing lambs. Translational Animal Science, 4(4), 1–10. https://doi.org/10.1093/tas/txaa203
Farghaly, M. M., Abdullah, M. A. M., Youssef, I. M. I., Abdel-Rahim, I. R., & Abouelezz, K. (2019). Effect of feeding hydroponic barley sprouts to sheep on feed intake, nutrient digestibility, nitrogen retention, rumen fermentation and ruminal enzymes activity. Livestock Sciences, 228, 31–37. https://doi.org/10.1016/j.livsci.2019.07.022
Ford, H. R., Busato, S., Trevisi, E., Muchiri, R. N., Breemen, R. B. V., Bionaz, M., & Ates, S. (2021). Effects of pasture type on metabolism, liver and kidney function, antioxidant status, and plant secondary compounds in plasma of grazing, jersey dairy cattle during mid-lactation. Frontiers Animal Science, 2, 1–14. https://doi.org/10.3389/fanim.2021.729423
Ghani, A. A. A., Shahudin, M. S., Zamri-Saad, M., Zuki, A. B., Wahid, H., Kasim, A., ... & Hassim, H. A. (2017). Enhancing the growth performance of replacement female breeder goats through modification of feeding program. Veterinary World, 10(6), 630. https://doi.org/10.14202/vetworld.2017.630-635
Gressley, T. F., & Armentano, L. E. (2005). Effect of abomasal pectin infusion on digestion and nitrogen balance in lactating dairy cows. Journal of Dairy Science, 88(11), 4028–4044. https://doi.org/10.3168/jds.S0022-0302(05)73089-7
Ha, D. J., Kim, J., Kim, Saehu, N., Go, G., & Woong, K. Y. (2021). Dietary whey protein supplementation increases immunoglobulin g production by affecting helper t cell populations after antigen exposure. Foods, 10(1), 194. https://doi.org/10.3390/foods10010194
Hammond, A. C. (1998). Use of BUN and MUN as guides for protein and energy supplementation in cattle. Corpoica Ciencia y Tecnología Agropecuaria, 2(2), 44-88. https://doi.org/10.21930/rcta.vol2_num2_art:171
Hristov, A. N., Bannink, A., Crompton, L. A., Huhtanen, P., Kreuzer, M., McGee, M., ... & Yu, Z. (2019). Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of dairy science, 102(7), 5811-5852. https://doi.org/10.3168/jds.2018-15829
Jeon, S., Jeong, S., Lee, M., Seo, J., Kam, D. K., Kim, J. H., ... & Seo, S. (2019). Effects of reducing inclusion rate of roughages by changing roughage sources and concentrate types on intake, growth, rumen fermentation characteristics, and blood parameters of Hanwoo growing cattle (Bos Taurus coreanae). Asian-Australasian journal of animal sciences, 32(11), 1705. https://doi.org/10.5713/ajas.19.0269
Juraschek, S. P., Appel, L. J., Anderson, C. A., & Miller III, E. R. (2013). Effect of a high-protein diet on kidney function in healthy adults: results from the OmniHeart trial. American Journal of Kidney Diseases, 61(4), 547-554. https://doi.org/10.1053/j.ajkd.2012.10.017
Karki, U. (2013). Pasture and Grazing Management for Parasite Control. In U. Karki (ed.), Integrated management of internal parasites in goats. Publication No. TUAG0513-01. Tuskegee, Alabama: Tuskegee University
Karki, U., & Karki, L. B. (2017). Winter forage program benefitted small-scale goat producers. Am. J. Agric. Biol. Sci, 12, 79-84. https://doi.org/10.3844/ajabssp.2017.79.84
Karki, U., Goodman, M. S., & Sladden, S. E. (2009). Nitrogen source influences on forage and soil in young southern-pine silvopasture. Agriculture, ecosystems & environment, 131(1-2), 70-76. https://doi.org/10.1016/j.agee.2008.09.007
Konwar, P., Tiwari, S. P., Gohain, M., & Kumari, K. (2015). The effects of protein dietary supplementation on fecal egg counts and hematological parameters in goat kids with subclinical nematodosis. Veterinary World, 8(11), 1351. https://doi.org/10.14202/vetworld.2015.1351-1355
Leslie Jr, D. M., Jenks, J. A., Chilelli, M., & Lavigne, G. R. (1989). Nitrogen and diaminopimelic acid in deer and moose feces. The Journal of wildlife management, 216-218. https://doi.org/10.2307/3801336
Li, P., Yin, Y. L., Li, D., Kim, S. W., & Wu, G. (2007). Amino acids and immune function. British journal of nutrition, 98(2), 237-252. https://doi.org/10.1017/S000711450769936X
Loncke, C., Nozière, P., Vernet, J., Lapierre, H., Bahloul, L., Al-Jammas, M., & Ortigues-Marty, I. (2020). Net hepatic release of glucose from precursor supply in ruminants: a meta-analysis. Animal, 14(7), 1422-1437.. https://doi.org/10.1017/S1751731119003410
Martinez, J. J., Löest, C. A., McCuistion, K. C., Wester, D. B., & Bell, N. L. (2022). Effects of monensin and protein supplementation on intake, digestion, and ruminal fermentation in beef cattle consuming low-quality forage. Applied Animal Science, 38(1), 13-21. https://doi.org/10.15232/aas.2021-02219
Mendes, J. B., Cintra, M. C. R., Nascimento, L. V., de Jesus, R. M. M., Maia, D., Ostrensky, A., & Sotomaior, C. S. (2018). Effects of protein supplementation on resistance and resilience of lambs naturally infected with gastrointestinal parasites. Semina: Ciências Agrárias, 39(2), 643-656. https://doi.org/10.5433/1679-0359.2018v39n2p643
Mohsan, I., Haque, M. N., Ahmad, N., & Mustafa, H. (2019). Effect of dietary protein level on growth and body condition score of male Beetal goats during summer. South African Journal of Animal Science, 49(5), 900-903. https://doi.org/http://dx.doi.org/10.4314/sajas.v49i5.13
Durango, S. G., Barahona, R., Bolívar, D., Chirinda, N., & Arango, J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability, 13(18), 10312. https://doi.org/10.3390/su131810312
Negesse, T., Rodehutscord, M., & Pfeffer, E. J. S. R. R. (2001). The effect of dietary crude protein level on intake, growth, protein retention and utilization of growing male Saanen kids. Small Ruminant Research, 39(3), 243-251. https://doi.org/10.1016/S0921-4488(00)00193-0
Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E., & Lüscher, A. (2011). Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agriculture, ecosystems & environment, 140(1-2), 155-163. https://doi.org/10.1016/j.agee.2010.11.022
Olafadehan, O. A. (2011). Changes in haematological and biochemical diagnostic parameters of Red Sokoto goats fed tannin-rich Pterocarpus erinaceus forage diets. Veterinarski ArhivVet Arh, . 81, 471–483
Paulson, J., Jung, H., Raeth-Knight, M., & Linn, J. (2008). Grass vs. legume forages for dairy cattle (pp. 119–133). University of Minnesota: Saint Paul, MA, USA.
Phengvichith, V., & Ledin, I. (2007). Effect of a diet high in energy and protein on growth, carcase characteristics and parasite resistance in goats. Tropical Animal Health and Production, 39, 59-70. https://doi.org/10.1007/s11250-006-4443-z
Przemysław, S., Cezary, P., Stanisław, M., Krzysztof, L., Barbara, P., Zofia, A., ... & Ząbek, K. (2015). The effect of nutritional and fermentational characteristics of grass and legume silages on feed intake, growth performance and blood indices of lambs. Small Ruminant Research, 123(1), 1-7. https://doi.org/10.1016/j.smallrumres.2014.11.008
Putri, E. M., Zain, M., Warly, L., & Hermon, H. (2021). Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Veterinary world, 14(3), 640. https://doi.org/10.14202/VETWORLD.2021.640-648
Saner, R. (n.d.). Grazing and Flerd “Advantages & Challenges of Multi-species Grazing”, UNL Extension, University of Nebraska Lincoln. https://extension.unl.edu/statewide/lincolnmcpherson/SheepGoatforage.pdf
Saro, C., Mateo, J., Caro, I., Carballo, D. E., Fernández, M., Valdés, C., ... & Giráldez, F. J. (2020). Effect of dietary crude protein on animal performance, blood biochemistry profile, ruminal fermentation parameters and carcass and meat quality of heavy fattening Assaf lambs. Animals, 10(11), 2177. https://doi.org/10.3390/ani10112177
Shrestha, B., Karki, U., Chaudhary, S., Tiwari, A., & Karki, L. B. (2023). Supplement Type Impact on the Performance and Nutrient Dynamics of Nursing Does and Kids Raised in Woodlands. Animals, 14(1), 68. https://doi.org/10.3390/ani14010068
Sleugh, B., Moore, K. J., George, J. R., & Brummer, E. C. (2000). Binary legume–grass mixtures improve forage yield, quality, and seasonal distribution. Agronomy Journal, 92(1), 24-29. https://doi.org/10.2134/agronj2000.92124x
Sturludóttir, E., Brophy, C., Belanger, G., Gustavsson, A. M., Jørgensen, M., Lunnan, T., & Helgadóttir, Á. (2014). Benefits of mixing grasses and legumes for herbage yield and nutritive value in N orthern E urope and C anada. Grass and forage science, 69(2), 229-240. https://doi.org/10.1111/gfs.12037
Tiwari, A., Karki, U., Paneru, B., Ellis, N., & Karki, L. B. (2021). Legume-grass pastures enhanced the growth of yearling kiko does. Professional Agriculturec Workers journal, J (PAWJ). 8, 1-9
Uribarri, J., & Calvo, M. S. (2003). Hidden sources of phosphorus in the typical American diet: does it matter in nephrology?. In Seminars in dialysis (Vol. 16, No. 3, pp. 186-188). Malden, USA: Blackwell Science Inc. https://doi.org/10.1046/j.1525-139X.2003.16037.x
USDA-APHIS. (2012). U.S. meat goat operations, info sheet. https://www.aphis.usda.gov/sites/default/files/goat09_is_meatgoatops_1.pdf
USDA-APHIS. (2017). Goat and kid predator and nonpredator death loss in the United States, 2015. https://www.aphis.usda.gov/animal_health/nahms/general/downloads/goat_kid_deathloss_2015.pdf
Van Vliet, S., Provenza, F. D., & Kronberg, S. L. (2021). Health-promoting phytonutrients are higher in grass-fed meat and milk. Frontiers in Sustainable Food Systems, 4, 555426. https://doi.org/10.3389/fsufs.2020.555426
Wang, L., Zhang, G., Li, Y., & Zhang, Y. (2020). Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals, 10(2), 223. https://doi.org/10.3390/ani10020223
Washing State University (WSU). (n.d.). Pasture management and problems while grazing. WSU extension. https://extension.wsu.edu/animalag/content/pasture-management-and-problems-while-grazing
Wei, Z., Maxwell, T. M., Robinson, B., & Dickinson, N. (2022). Legume nutrition is improved by neighbouring grasses. Plant and Soil, 475(1), 443-455. https://doi.org/10.1007/s11104-022-05379-4
Whetsell, M., & Rayburn, E. (2022). Variation in fatty acids concentration in grasses, legumes, and forbs in the allegheny plateau. Agronomy, 12(7), 1693. https://doi.org/10.3390/agronomy12071693
Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological reviews, 80(3), 1107-1213. https://doi.org/10.1152/physrev.2000.80.3.1107
Xia, C., Rahman, M.A.U., Yang, H., Shao, T., Qiu, Q., Su, H., & Cao, B., (2018). Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian-Australasian Journal of Animalm Sciences. 31, 1643–1653. https://doi.org/10.5713/ajas.18.0125
Xue, P. C., Ragland, D., & Adeola, O. (2017). Influence of dietary crude protein and phosphorus on ileal digestion of phosphorus and amino acids in growing pigs. Journal of Animal Science, 95(5), 2071-2079. https://doi.org/10.2527/jas2016.1293
Zhu, W., Xu, W., Wei, C., Zhang, Z., Jiang, C., & Chen, X. (2020). Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids (Capra. hircus). Animals, 10(1), 151. https://doi.org/10.3390/ani10010151
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anand Tiwari, Uma Karki, Kendra Norwood, Ja’Nia Johnson, Lila Karki

This work is licensed under a Creative Commons Attribution 4.0 International License.