Antibiotic Resistance Pattern of Lactobacillus reuteri, Lactobacillus salivarius, and Enterococcus hirae Isolated from Gastrointestinal and Respiratory Tract in Commercial Broiler Chickens

Authors

  • Galib Ahsan Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • M. M. Kamal Hossain Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Bangladesh
  • Jahangir Alam National Institute of Biotechnology, Savar, Dhaka, Bangladesh
  • Md. Abdul Alim National Institute of Biotechnology, Savar, Dhaka, Bangladesh
  • Sabbir Ahmed Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Rizone Al Hasib Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Abu Reza Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Masuma Anzuman Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Shovon Shaha Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh
  • Md. Shahedur Rahman Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Bangladesh
  • Mohammad Abu Hena Mostofa Jamal Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia-7003, Bangladesh

DOI:

https://doi.org/10.54536/ijvmas.v1i1.3517

Keywords:

Antibiotic Resistance, Antibiotic Susceptibility Test, Broiler Chicken, Gastrointestinal Tract, Respiratory Tract

Abstract

Ever since antibiotics were discovered for the treatment of bacterial diseases, an increase in antibiotic-resistant bacteria has been noticed as an economic and public health concern with a high rate of morbidity and mortality. Antibiotic resistance in broiler chickens can be a great threat to public health. This research aimed to screen commercial poultry’s gastrointestinal and respiratory tract bacteria to observe the antibiotic resistance pattern. In this experiment, gastrointestinal tract (GIT) and respiratory tract (RT) bacteria were identified using 16s rRNA gene sequencing from broiler chickens in anaerobic conditions following a bile salt tolerance assay and an antibiotic susceptibility test. Lactobacillus reuteri, Lactobacillus salivarius, and Enterococcus hirae were identified as the isolates. The bacteria found in the gut had a modest degree of bile salt tolerance. The isolates were sensitive to amoxicillin, gentamicin, and streptomycin but resistant to tetracycline, levofloxacin, metronidazole, azithromycin, and erythromycin. This study ensures that the GIT and RT of broiler chicken is a hidden source of the isolated bacteria. A large part of this bacterial population is antibiotic-resistant and reported as a public health concern.

References

Abellan-Schneyder, I., Matchado, M. S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, pipelines, parameters: Issues in 16S rRNA gene sequencing. mSphere, 6(1). https://doi.org/10.1128/msphere.01202-20

Agyare, C., Boamah, V. E., Zumbi, C. N., & Osei, F. B. (2019). Antibiotic use in poultry production and its effects on bacterial resistance. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.79371

Akter, M. S., Uddin, M. T., & Dhar, A. R. J. C. (2023). Advancing safe broiler farming in Bangladesh: An investigation of management practices, financial profitability, and consumer perceptions. Commodities, 2(3), 312–328. https://doi.org/10.3390/commodities2030018

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

Aruwa, C. E., Pillay, C., Nyaga, M. M., & Sabiu, S. (2021). Poultry gut health–microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. Journal of Animal Science and Biotechnology, 12(1). https://doi.org/10.1186/s40104-021-00640-9

Azad, M. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic species in the modulation of gut microbiota: An overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2005). GenBank. Nucleic Acids Research, 33(Database issue), D34–D38. https://doi.org/10.1093/nar/gki063

Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: A challenge for the food industry. Critical Reviews in Food Science and Nutrition, 53(1), 11–48. https://doi.org/10.1080/10408398.2010.519837

Celi, P., Verlhac, V., Calvo, E. P., Schmeisser, J., & Kluenter, A. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250, 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012

Chen, C., Yu, L., Tian, F., Zhao, J., & Zhai, Q. (2022). Identification of novel bile salt-tolerant genes in Lactobacillus using comparative genomics and its application in the rapid screening of tolerant strains. Microorganisms, 10(12), 2371. https://doi.org/10.3390/microorganisms10122371

Church, D. L., Cerutti, L., Gürtler, A., Griener, T., Zelazny, A., & Emler, S. (2020). Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clinical Microbiology Reviews, 33(4). https://doi.org/10.1128/cmr.00053-19

Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359

De Mesquita Souza Saraiva, M., Lim, K., Monte, D. F. M. D., Givisiez, P. E. N., Alves, L. B. R., De Freitas Neto, O. C., Kariuki, S., Júnior, A. B., De Oliveira, C. J. B., & Gebreyes, W. A. (2021). Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Brazilian Journal of Microbiology, 53(1), 465–486. https://doi.org/10.1007/s42770-021-00635-8

Carrasco, J. M. D., Casanova, N. A., & Miyakawa, M. E. F. (2019). Microbiota, gut health, and chicken productivity: What is the connection? Microorganisms, 7(10), 374. https://doi.org/10.3390/microorganisms7100374

Fatoba, D. O., Amoako, D. G., Akebe, A. L. K., Ismail, A., & Essack, S. Y. (2022). Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne Tet (M), Tet (L) and Erm (B) genes from chicken litter to agricultural soil in South Africa. Journal of Environmental Management, 302, 114101. https://doi.org/10.1016/j.jenvman.2021.114101

George, S., Aguilera, X., Gallardo, P., Farfán, M., Lucero, Y., Torres, J. P., Vidal, R., & O’Ryan, M. (2022). Bacterial gut microbiota and infections during early childhood. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.793050

Greppi, A., Asare, P. T., Schwab, C., Zemp, N., Stephan, R., & Lacroix, C. (2020). Isolation and comparative genomic analysis of reuterin-producing Lactobacillus reuteri from the chicken gastrointestinal tract. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01166

Haque, M. H., Sarker, S., Islam, M. S., Islam, M. A., Karim, M. R., Kayesh, M. E. H., Shiddiky, M. J. A., & Anwer, M. S. (2020). Sustainable antibiotic-free broiler meat production: Current trends, challenges, and possibilities in a developing country perspective. Biology, 9(11), 411. https://doi.org/10.3390/biology9110411

Hassan, K. E., El‐Kady, M. F., El‐Sawah, A. A., Luttermann, C., Parvin, R., Shany, S., Beer, M., & Harder, T. (2019). Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transboundary and Emerging Diseases, 68(1), 21–36. https://doi.org/10.1111/tbed.13281

Huemer, M., Shambat, S. M., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/embr.202051034

Jones, P. J., Niemi, J., Christensen, J., Tranter, R. B., & Bennett, R. M. (2019). A review of the financial impact of production diseases in poultry production systems. Animal Production Science, 59(9), 1585. https://doi.org/10.1071/an18281

Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M. E., Chi, F., Cravens, R. L., & Oh, S. (2018). Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 49(1). https://doi.org/10.1186/s13567-018-0562-6

Mandal, A. K., Talukder, S., Hasan, M. M., Tasmim, S. T., Parvin, M. S., Ali, M. Y., & Islam, M. T. (2021). Epidemiology and antimicrobial resistance of Escherichia coli in broiler chickens, farmworkers, and farm sewage in Bangladesh. Veterinary Medicine and Science, 8(1), 187–199. https://doi.org/10.1002/vms3.664

Mathew, P., Sivaraman, S., & Chandy, S. (2019). Communication strategies for improving public awareness on appropriate antibiotic use: Bridging a vital gap for action on antibiotic resistance. Journal of Family Medicine and Primary Care, 8(6), 1867. https://doi.org/10.4103/jfmpc.jfmpc_263_19

Mottalib, M. A., Zilani, G., Suman, T. I., Ahmed, T., & Islam, S. (2018). Assessment of trace metals in consumer chickens in Bangladesh. Journal of Health & Pollution, 8(20). https://doi.org/10.5696/2156-9614-8.20.181208

Ngunjiri, J. M., Taylor, K. J. M., Abundo, M. C., Jang, H., Elaish, M., Kc, M., Ghorbani, A., Wijeratne, S., Weber, B. P., Johnson, T. J., & Lee, C. (2019). Farm stage, bird age, and body site dominantly affect the quantity, taxonomic composition, and dynamics of respiratory and gut microbiota of commercial layer chickens. Applied and Environmental Microbiology, 85(9). https://doi.org/10.1128/aem.03137-18

Peng, Z., Li, M., Wang, W., Liu, H., Fanning, S., Hu, Y., Zhang, J., & Li, F. (2017). Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale. MicrobiologyOpen, 6(6). https://doi.org/10.1002/mbo3.514

Ravindran, V., & Abdollahi, M. R. (2021). Nutrition and digestive physiology of the broiler chick: State of the art and outlook. Animals, 11(10), 2795. https://doi.org/10.3390/ani11102795

Sadiq, M. S., & Othman, R. M. (2022). Phylogenetic tree constructed of Salmonella enterica subspecies enterica isolated from animals and humans in Basrah and Baghdad governorates, Iraq. Iraqi Journal of Veterinary Sciences, 36(4), 895–903. https://doi.org/10.33899/ijvs.2022.132478.2096

Sharma, C., Rokana, N., Chandra, M., Singh, B. P., Gulhane, R. D., Gill, J. P. S., Ray, P., Puniya, A. K., & Panwar, H. (2018). Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Frontiers in Veterinary Science, 4. https://doi.org/10.3389/fvets.2017.00237

Singh, T. P., Kaur, G., Malik, R. K., Schillinger, U., Guigas, C., & Kapila, S. (2012). Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics and Antimicrobial Proteins, 4(1), 47–58. https://doi.org/10.1007/s12602-012-9090-2

Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics110810

Yin, D., Guo, Y., Han, R., Yang, Y., Zhu, D., & Hu, F. (2023). A modified Kirby-Bauer disc diffusion (mKB) method for accurately testing tigecycline susceptibility: A nationwide multicenter comparative study. Journal of Medical Microbiology, 72(8). https://doi.org/10.1099/jmm.0.001671

Yitbarek, M. B. (2019). Livestock and livestock product trends by 2050: Review. International Journal of Animal Research, 4. https://doi.org/10.28933/ijar-2019-07-2305

Published

2024-10-05

How to Cite

Ahsan, G., Hossain, M. M. K., Alam, J., Alim, M. A., Ahmed, S., Hasib, R. A., Reza, A., Anzuman, M., Shaha, S., Rahman, M. S., & Jamal, M. A. H. M. (2024). Antibiotic Resistance Pattern of Lactobacillus reuteri, Lactobacillus salivarius, and Enterococcus hirae Isolated from Gastrointestinal and Respiratory Tract in Commercial Broiler Chickens. International Journal of Veterinary Medicine and Animal Science, 1(1), 56–63. https://doi.org/10.54536/ijvmas.v1i1.3517