Preparation and Conductivity of Polymer-Modified Graphene Films

Authors

  • Md. Jewel Rana Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
  • Khan Rajib Hossain State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Marzan Mursalin Jami School of Textile Science and Engineering, Wuhan Textile University, Wuhan, China
  • Md. Abu Shyeed Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
  • Md. Kamrul Hasan Department of Chemistry,Hajee Mohammad Danesh Science & Technology, Dinajpur 5200, Bangladesh

DOI:

https://doi.org/10.54536/ajsts.v2i1.1110

Keywords:

Conductive, Graphene Film, Polyethyleneimine, Graphene Oxide

Abstract

The Hummers method was used to make graphite oxide, and ultrasonic exfoliation at 25°C and 90°C was used to make graphene oxide (GO). At a low temperature, polyethyleneimine (PEI) was used as a reducing and changing agent for graphene oxide (GO) to make dispersions of graphene that were modified with PEI. Optoelectronics’ electron and infrared spectroscopy showed how temperature affected PEI’s ability to break down GO. The results show that PEI can partially reduce GO at 25°C. At 90°C, the grafted PEI gradually dissociated from the GO sheet. The graphene dispersion was filtered and assembled into a PEI-GO film, and its conductivity was found to be 117S.m-1, hopefully conductive material for graphene.

Downloads

Download data is not yet available.

References

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano letters, 8(3), 902-907. https://doi.org/10.1021/nl0731872

Chua, C. K., Ambrosi, A., & Pumera, M. (2012). Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide. Journal of materials chemistry, 22(22), 11054-11061. https://doi.org/10.1039/C2JM16054D

Gao, Y., Liu, L. Q., Zu, S. Z., Peng, K., Zhou, D., Han, B. H., & Zhang, Z. (2011). The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers. ACS nano, 5(3), 2134-2141. https://doi.org/10.1021/nn103331x

Jun, Y. S., Sy, S., Ahn, W., Zarrin, H., Rasen, L., Tjandra, R., ... & Yu, A. (2015). Highly conductive interconnected graphene foam based polymer composite. Carbon, 95, 653-658. https://doi.org/10.1016/j.carbon.2015.08.079

Kim, K. W., Kim, J. H., Cho, S., Shin, K., & Kim, S. H. (2017). Scalable high-performance graphene paper with enhanced electrica and mechanical properties. Thin Solid Films, 632, 50-54. https://doi.org/10.1016/j.tsf.2017.04.039

Kordkheili, S. H., & Moshrefzadeh-Sani, H. (2013). Mechanical properties of double-layered graphene sheets. Computational Materials Science, 69, 335-343. https://doi.org/10.1016/j.commatsci.2012.11.027

Liu, Y., Xie, B., Zhang, Z., Zheng, Q., & Xu, Z. (2012). Mechanical properties of graphene papers. Journal of the Mechanics and Physics of Solids, 60(4), 591-605. https://doi.org/10.1016/j.jmps.2012.01.002

Liu, H., Kuila, T., Kim, N. H., Ku, B. C., & Lee, J. H. (2013). In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. Journal of materials chemistry a, 1(11), 3739-3746. https://doi.org/10.1039/C3TA01228J

Lei, L., Xia, Z., Zhang, L., Zhang, Y., & Zhong, L. (2016). Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions. Progress in organic coatings, 97, 19-27. http://dx.doi.org/10.1016%2Fj.porgcoat.2016.03.011

Li, X., Wang, H., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. (2009). Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 131(43), 15939-15944. https://doi.org/10.1021/ja907098f

Mohan, V. B., Jayaraman, K., Stamm, M., & Bhattacharyya, D. (2016). Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Films, 616, 172-182. https://doi.org/10.1016/j.tsf.2016.08.007

Pop, E., Varshney, V., & Roy, A. K. (2012). Thermal properties of graphene: Fundamentals and applications. MRS bulletin, 37(12), 1273-1281. https://doi.org/10.1557/mrs.2012.203

Qi, X. Y., Yan, D., Jiang, Z., Cao, Y. K., Yu, Z. Z., Yavari, F., & Koratkar, N. (2011). Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS applied materials & interfaces, 3(8), 3130-3133. https://doi.org/10.1021/am200628c

Schöche, S., Hong, N., Khorasaninejad, M., Ambrosio, A., Orabona, E., Maddalena, P., & Capasso, F. (2017). Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry. Applied Surface Science, 421, 778-782. https://doi.org/10.1016/j.apsusc.2017.01.035

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034

Song, P., Zhang, X., Sun, M., Cui, X., & Lin, Y. (2012). Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. Rsc Advances, 2(3), 1168-1173. https://doi.org/10.1039/C1RA00934F

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924. https://doi.org/10.1002/adma.201001068

Xu, L. Q., Liu, Y. L., Neoh, K. G., Kang, E. T., & Fu, G. D. (2011). Reduction of graphene oxide by aniline with its concomitant oxidative polymerization. Macromolecular rapid communications, 32(8), 684-688. https://doi.org/10.1002/marc.201000765

Xu, Z., Bando, Y., Liu, L., Wang, W., Bai, X., & Golberg, D. (2011). Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS nano, 5(6), 4401-4406. https://doi.org/10.1021/nn103200t

Downloads

Published

2023-03-06

How to Cite

Rana, M. J., Hossain, K. R., Jami, M. M., Shyeed, M. A., & Hasan, M. K. (2023). Preparation and Conductivity of Polymer-Modified Graphene Films. American Journal of Smart Technology and Solutions, 2(1), 15–19. https://doi.org/10.54536/ajsts.v2i1.1110