Self-Healing Concrete by Microorganisms in the Altered Pozzolan of Madagascar with Calcium from Crab Wastes

Authors

  • Toavina M. Andriamanalina Department of Chemical Engineering, Université d’Antananarivo, Ecole Supérieure Polytechnique d’Antananarivo, 101 Antananarivo, Madagascar https://orcid.org/0000-0001-9854-5188
  • Martial D. Andrianandrasana Department of Terrestrial Ecosystem, Centre National de Recherche sur l’Environnement, 101 Antananarivo, Madagascar
  • Maxime Raharison Department of Materials, Laboratoire National des Travaux Publics et du Bâtiment, 101 Antananarivo, Madagascar
  • Edouard R. Andrianarison Department of Chemical Engineering, Université d’Antananarivo, Ecole Supérieure Polytechnique d’Antananarivo, 101 Antananarivo, Madagascar

DOI:

https://doi.org/10.54536/ajet.v2i1.1061

Keywords:

Concrete, Self-Healing, Crack, Crab, Pozzolan, Extremophile

Abstract

Concrete is at a high risk of cracking which threats its durability. Self-healing bacterial concrete has been developed in recent years to tackle this issue and its effectiveness has been massively studied. However, bacteria need carriers and expanded clay is the most used as such, but it reduces concrete strength. Moreover, bacterial culture and immobilization processes are highly expensive; calcium salts also contribute to the high cost of this type of concrete. This work therefore aims to overcome these limitations. Calcium salts were collected from the chitosan production process from crab waste. In addition, we noticed that Betafo pozzolan contains an abundant number of microorganisms, and for the first time, we discovered that those microorganisms have polyextremophilic characters, are resistant to various sterilization methods, and allow the self-healing concrete process. We concluded that calcium salts from the crab, with those microorganisms are able to heal crack up to 350 µm wide, reducing the expenses related to nutrients, and eliminating those related to the growth and the immobilization of bacteria on carrier. Moreover, we pointed out that pozzolan significantly increases compressive strength by 90.04%. However, the behavior of those microorganisms and the pozzolanic reactions need to be further investigated.

Downloads

Download data is not yet available.

References

Addinsoft, A. (2019). XLSTAT statistical and data analysis solution. Long Island, NY, USA. https://www.xlstat.com

Andrew, R. M. (2018). Global CO 2 emissions from cement production. Earth System Science Data, 10(1), 195-217. https://doi.org/10.5194/essd-2019-152

Alazhari, M., Sharma, T., Heath, A., Cooper, R., & Paine, K. (2018). Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Construction and Building Materials, 160, 610-619. https://doi.org/10.1016/j.conbuildmat.2017.11.086

An, H., Peters, M. Y., & Seymour, T. A. (1996). Roles of endogenous enzymes in surimi gelation. Trends in Food Science & Technology, 7(10), 321-327. https://doi.org/10.1016/0924-2244(96)10035-2

ASTM. (2018). ASTM C125-Standard Terminology Relating to Concrete and Concrete Aggregates.

ASTM, A. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM C, 128.

Baron, R., Socol, M., Arhaliass, A., Bruzac, S., Le Roux, K., Del Pino, J. R., ... & Kaas, R. (2015). Kinetic study of solid phase demineralization by weak acids in one-step enzymatic bio-refinery of shrimp cuticles. Process Biochemistry, 50(12), 2215-2223. http://dx.doi.org/10.1016/j.procbio.2015.09.017

Beladjal, L., Gheysens, T., Clegg, J. S., Amar, M., & Mertens, J. (2018). Life from the ashes: survival of dry bacterial spores after very high temperature exposure. Extremophiles, 22(5), 751-759. https://doi.org/10.1007/s00792-018-1035-6

Bureau of Geological and Mining Research (France)., & Rocher, P. (1992). Guide rocks and industrial minerals: Pumice and pozzolan. BRGM.

Byloos, B., Monsieurs, P., Mysara, M., Leys, N., Boon, N., & Van Houdt, R. (2018). Characterization of the bacterial communities on recent Icelandic volcanic deposits of different ages. BMC microbiology, 18(1), 1-11. https://doi.org/10.1186/s12866-018-1262-0

Cao, K., Wang, L., Xu, Y., Shen, W., & Wang, H. (2021). The hydration and compressive strength of cement mortar prepared by calcium acetate solution. Advances in Civil Engineering, 4, 1-9. https://doi.org/10.1155/2021/8817725

Ciera, L., Beladjal, L., Almeras, X., Gheysens, T., Nierstrasz, V., Van, L. L., & Mertens, J. (2014). Resistance of Bacillus amyloliquefaciens spores to melt extrusion process conditions. Fibres & Textiles in Eastern Europe, 2(104), 102-107.

Gbenebor, O. P., Adeosun, S. O., Adegbite, A. A., & Akinwande, C. (2018). Organic and mineral acid demineralizations: effects on crangon and Liocarcinus vernalis–sourced biopolymer yield and properties. Journal of Taibah University for Science, 12(6), 837-845. https://doi.org/10.1080/16583655.2018.1525845

Han, S., Choi, E. K., Park, W., Yi, C., & Chung, N. (2019). Effectiveness of expanded clay as a bacteria carrier for self-healing concrete. Applied Biological Chemistry, 62(1), 1-5. https://doi.org/10.1186/s13765-019-0426-4

Herrera, A., Cockell, C. S., Self, S., Blaxter, M., Reitner, J., Arp, G., ... & Tindle, A. G. (2008). Bacterial colonization and weathering of terrestrial obsidian in Iceland. Geomicrobiology Journal, 25(1), 25-37. http://dx.doi.org/10.1080/01490450701828982

Herrera, A., Cockell, C. S., Self, S., Blaxter, M., Reitner, J., Thorsteinsson, T., ... & Tindle, A. G. (2009). A cryptoendolithic community in volcanic glass. Astrobiology, 9(4), 369-381. https://doi.org/10.1089/ast.2008.0278

Jonkers, H. M., & Schlangen, E. (2007, April). Crack repair by concrete-immobilized bacteria. In Proceedings of the first international conference on self healing materials, 18, 20.

Jonkers, H. M., & Schlangen, E. (2008). Development of a bacteria-based self healing concrete. Tailor Made Concrete Structures, 1, 425-430.

Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological engineering, 36(2), 230-235. https://doi.org/10.1016/j.ecoleng.2008.12.036

Jonkers, H. M. (2011). Bacteria-based self-healing concrete. Heron, 56(2).

Magaji A., Yakubu M. and Wakawa Y., (2019). A review paper on self-healing concrete, The International Journal of Engineering and Science, 8(5), 47-54. https://doi.org/10.9790/1813-0805014754

Moriconi, G. (2007, June). Recyclable materials in concrete technology: sustainability and durability. In Sustainable construction materials and technologies, Proc. Special Sessions of First inter. conf. on sustainable construction materials and technologies, Coventry, UK, 11-13.

Meyer, C. (2002). Concrete and sustainable development. ACI Special Publications, 206, 501-512.

Muñoz, I., Rodríguez, C., Gillet, D., & M Moerschbacher, B. (2018). Life cycle assessment of chitosan production in India and Europe. The International Journal of Life Cycle Assessment, 23(5), 1151-1160. https://doi.org/10.1007/s11367-017-1290-2

Navrátilová, E., & Rovnaníková, P. (2016). Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials, 120, 530-539. http://dx.doi.org/10.1016/j.conbuildmat.2016.05.062

Othman, R., Jaya, R. P., Muthusamy, K., Sulaiman, M., Duraisamy, Y., Abdullah, M. M. A. B., ... & Sandu, A. V. (2021). Relation between density and compressive strength of foamed concrete. Materials, 14(11), 2967. https://doi.org/10.3390/ma14112967

Rasband, W. S. (2011). National Institutes of Health, Bethesda, Maryland, USA. http://imagej. nih. gov/ij/

Riofrio, A., Alcivar, T., & Baykara, H. (2021). Environmental and economic viability of chitosan production in Guayas-Ecuador: a robust investment and life cycle analysis. ACS omega, 6(36), 23038-23051. https://doi.org/10.1021/acsomega.1c01672

Santos, V. P., Marques, N. S., Maia, P. C., Lima, M. A. B. D., Franco, L. D. O., & Campos-Takaki, G. M. D. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International journal of molecular sciences, 21(12), 4290. https://doi.org/10.3390/ijms21124290

Schlegel, H. G., & Zaborosch, C. (1993). General microbiology. Cambridge university press.

Schmitz, C., González Auza, L., Koberidze, D., Rasche, S., Fischer, R., & Bortesi, L. (2019). Conversion of chitin to defined chitosan oligomers: current status and future prospects. Marine drugs, 17(8), 452. https://doi.org/10.3390/md17080452.

Sierra-Beltran, M. G., Jonkers, H. M., & Schlangen, E. (2014). Characterization of sustainable bio-based mortar for concrete repair. Construction and Building materials, 67, 344-352. http://dx.doi.org/10.1016/j.conbuildmat.2014.01.012

Silva, F. B., Boon, N., Belie, N. D., & Verstraete, W. (2015). Industrial application of biological self-healing concrete: Challenges and economical feasibility. Journal of Commercial Biotechnology, 21(1). https://doi.org/10.5912/jcb662

Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118-125. http://dx.doi.org/10.1016/j.conbuildmat.2016.06.080

Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and concrete composites, 33(7), 763-770. https://doi.org/10.1016/j.cemconcomp.2011.03.012

Wang, S. L. (2019). Production of potent antidiabetic compounds from shrimp head powder via Paenibacillus conversion. Process Biochemistry, 76, 18-24. https://doi.org/10.1016/j.procbio.2018.11.004

Downloads

Published

2023-01-16

How to Cite

Andriamanalina, T. M., Andrianandrasana, M. D., Raharison, M., & Andrianarison, E. R. (2023). Self-Healing Concrete by Microorganisms in the Altered Pozzolan of Madagascar with Calcium from Crab Wastes. American Journal of Education and Technology, 2(1), 1–9. https://doi.org/10.54536/ajet.v2i1.1061