Enzymatic Degradation of Polyethylene and Polyethylene Terephthalate: A Mini Review

Authors

  • Homayoon Raoufi Faculty of Agriculture, University of Kunduz, Kunduz, Afghanistan
  • Shirullah Taqwa Faculty of Environment, University of Tehran, Tehran, Iran
  • Fahima Fagiryaar Faculty of Environment, University of Tehran, Tehran, Iran

DOI:

https://doi.org/10.54536/ajec.v2i3.1937

Keywords:

Polyethylene, Polyethylene Terephthalate, Biodegradation, Microbes, Enzymatic Degradation

Abstract

Polyethylene (PE) and Polyethylene Terephthalate (PET) are the most widely used plastics for many purposes, including packaging, textiles, medicine, engineering, the electronic industry, etc. Among existing approaches to manage and recycle plastic waste, the enzymatic method is promising due to its quality in the environment, low energy consumption, lack of hazardous chemical elements, and expansive machinery. Several enzymes produced by a group of microorganisms, such as bacteria, fungi, and algae, play a significant role in this method. These enzymes can depolymerize plastic’s polymer when they are released by the microbes on the plastic surface under suitable conditions. This study was conducted by surveying the published articles on PubMed and Elsevier. We searched the TS (topic search) in the webs and applied some criteria and filters, such as text availability (“The free full text”) and publication date (“5 years”). Based on the TS “PE”, “PET” and “enzymatic degradation”, the articles were selected. Among hundreds of articles, we chose only 26 to review. Several enzymes (e.g., cutinase, lipase, laccase, PETase, and esterase) that can degrade PE and PET have been reported in the literature, and they are isolated from microorganisms that are categorized into fungi, bacteria, and algae.

Downloads

Download data is not yet available.

References

Ahmaditabatabaei, S., Kyazze, G., Iqbal, H. M. N., & Keshavarz, T. (2021). Fungal Enzymes as Catalytic Tools for Polyethylene Terephthalate (PET) Degradation. J Fungi (Basel), 7(11). https://doi.org/10.3390/jof7110931

Benyathiar, P., Kumar, P., Carpenter, G., Brace, J., & Mishra, D. K. (2022). Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers (Basel), 14(12). https://doi.org/10.3390/polym14122366

Blázquez-Sánchez, P., F. Engelberger, J. Cifuentes-Anticevic, C. Sonnendecker, A. Griñén, J. Reyes, B. Díez, V. Guixé, P. K. Richter, W. Zimmermann and C. A. Ramírez-Sarmiento (2022). “Antarctic Polyester Hydrolases Degrade Aliphatic and Aromatic Polyesters at Moderate Temperatures.” Appl Environ Microbiol 88(1), e0184221.

Bobori, D. C., Feidantsis, K., Dimitriadi, A., Datsi, N., Ripis, P., Kalogiannis, S., . . . Kaloyianni, M. (2022). Dose-Dependent Cytotoxicity of Polypropylene Microplastics (PP-MPs) in Two Freshwater Fishes. Int J Mol Sci, 23(22). https://doi.org/10.3390/ijms232213878

Bollinger, A., Thies, S., Knieps-Grunhagen, E., Gertzen, C., Kobus, S., Hoppner, A., . . . Jaeger, K.-E. (2020). A Novel Polyester Hydrolase From the Marine Bacterium Pseudomonas aestunsnigri-Structural and Functional Insights. frontiers in microbiology, 1-16.

Budhiraja, V., Urh, A., Horvat, P., & Krzan, A. (2022). Synergistic Adsorption of Organic Pollutants on Weathered Polyethylene Microplastics. Polymers (Basel), 14(13). https://doi.org/10.3390/polym14132674

Czarnecka-Komorowska, D., Nowak-Grzebyta, J., Gawdzińska, K., Mysiukiewicz, O., & Tomasik, M. (2021). Polyethylene/Polyamide Blends Made of Waste with Compatibilizer: Processing, Morphology, Rheological and Thermo-Mechanical Behavior. Polymers (Basel), 13(14). https://doi.org/10.3390/polym13142385

Damayanti, D., Supriyadi, D., Amelia, D., Saputri, D. R., Devi, Y. L. L., Auriyani, W. A., & Wu, H. S. (2021). Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers (Basel), 13(17). https://doi.org/10.3390/polym13172886

Dhaka, V., Singh, S., Anil, A. G., Sunil Kumar Naik, T. S., Garg, S., Samuel, J., . . . Singh, J. (2022). Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ Chem Lett, 20(3), 1777-1800. https://doi.org/10.1007/s10311-021-01384-8

Flores-Rojas, G. G., López-Saucedo, F., Vera-Graziano, R., Magaña, H., Mendizábal, E., & Bucio, E. (2022). Silver Nanoparticles Loaded on Polyethylene Terephthalate Films Grafted with Chitosan. Polymers (Basel), 15(1). https://doi.org/10.3390/polym15010125

Giyahchi, M., & Moghimi, H. (2023). Aerobic biodegradation of untreated polyester–polyether urethanes by newly isolated yeast strains Exophilia sp. NS 7 and Rhodotorula sp. NS 12. Scientific reports, 1-10. https://doi.org/10.1038/s41598-023-31639-z

Jeon, J.-M., Park, S.-J., Choi, T.-R., Park, J.-H., Yang, Y.-H., & Yoon, J.-J. (2021). Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated form soil grove. Polymer Degradation and Stability,1-8. https://doi.org/10.1016/j.polymdegradstab.2021.109662

Kaushal , J., Khatri, M., & Arya, S. K. (2021). Recent insight into enzymatic degredation of plastics prevalent in the environment: A min - review. Cleaner Engineering and Technology, 1-8.

Kawai, F., Furushima, Y., Mochizuki, N., Muraki, N., Yamashita, M., Iida, A., . . . Kitajima, S. (2022). Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. AMB Express, 12(1), 134. https://doi.org/10.1186/s13568-022-01474-y

Khairul Anuar, N. F. S., Huyop, F., Ur-Rehman, G., Abdullah, F., Normi, Y. M., Sabullah, M. K., & Abdul Wahab, R. (2022). An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation. Int J Mol Sci, 23(20). https://doi.org/10.3390/ijms232012644

Kim, J. W., Park, S. B., Tran, Q. G., Cho, D. H., Choi, D. Y., Lee, Y. J., & Kim, H. S. (2020). Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microb Cell Fact, 19(1), 97. https://doi.org/10.1186/s12934-020-01355-8

Kim, M. O., Park, J. K., Han, T. H., Seo, J., & Park, S. (2021). Influence of Polyethylene Terephthalate Powder on Hydration of Portland Cement. Polymers (Basel), 13(15). https://doi.org/10.3390/polym13152551

Kitamoto, H., Koitabashi, M., Sameshima-Yamashit, Y., Ueda, H., Takeuchi, A., Watanabe, T., . . . Fukuoka, T. (2023). Accelerated degradation of plastic products via yeast enzyme treatment. scientific reports, 1-11. https://doi.org/10.1038/s41598-023-29414-1

Lionetto, F., Corcione, C. E., Rizzo, A., & Maffezzoli, A. (2021). Production and Characterization of Polyethylene Terephthalate Nanoparticles. Polymers (Basel), 13(21). https://doi.org/10.3390/polym13213745

Liu, P., Y. Zheng, Y. Yuan, T. Zhang, Q. Li, Q. Liang, T. Su and Q. Qi (2022). “Valorization of Polyethylene Terephthalate to Muconic Acid by Engineering Pseudomonas Putida.” Int J Mol Sci, 23(19).

Maurya, A., Bhattacharya, A., & Khare, S. K. (2020). Enzymatic Remediation of Polyethylene Terephthalate (PET)- based Polymers for Effective Management of Plastic Wastes: An Overview. frintiers in Bioengineering and Biotechnology, 1-13.

Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and Enzymatic Degradation of Synthetic Plastics. Front Microbiol, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709

Montanari, E. (2020). Thermal Degradation of PVC-PET Plastic Mixtures. Ghent Uuniversity, chemistry, materials and chemical engineering (Giulio Natta). Giulio Natta: GHENT UNIVERSITY.

Montazer, Z., Habibi Najafi, M. B., & Levin, D. B. (2020). Challenges with Verifying Microbial Degradation of Polyethylene. Polymers (Basel), 12(1). https://doi.org/10.3390/polym12010123

Palm, G. J., L. Reisky, D. Böttcher, H. Müller, E. A. P. Michels, M. C. Walczak, L. Berndt, M. S. Weiss, U. T. Bornscheuer and G. Weber (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat Commun 10(1), 1717.

Panowicz, R., Konarzewski, M., Durejko, T., Szala, M., Łazińska, M., Czerwińska, M., & Prasuła, P. (2021). Properties of Polyethylene Terephthalate (PET) after Thermo-Oxidative Aging. Materials (Basel), 14(14). https://doi.org/10.3390/ma14143833

Qi, X., Yan, W., Cao, Z., Ding, M., & Yuan, Y. (2021). Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Microorganisms, 10(1). https://doi.org/10.3390/microorganisms10010039

Rezvani Ghomi, E., Khosravi, F., Mossayebi, Z., Saedi Ardahaei, A., Morshedi Dehaghi, F., Khorasani, M., . . . Ramakrishna, S. (2020). The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules, 25(21). https://doi.org/10.3390/molecules25215157

Shamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., . . . Suh, S. (2020). Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry & Engineering, 3494-3511. https://dx.doi.org/10.1021/acssuschemeng.9b06635

Siracusa, V., & Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers (Basel), 12(8). https://doi.org/10.3390/polym12081641

Soong, Y. V., Sobkowicz, M. J., & Xie, D. (2022). Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering (Basel), 9(3). https://doi.org/10.3390/bioengineering9030098

Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 10(6). https://doi.org/10.3390/microorganisms10061180

Ugbolue, S. (2017). Polyolefin Fibers. In S. Ugbolue, Synthetic Polymer–Polymer Composites (pp. 561-573). Kiagboda,, Delta State, Nigeria: Woodhead Publishing.

Viljakainen, V., & Hug, L. (2021). New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microormanisms and enzymes. computational and stractural biotechnology Journal, 6191-6200. https://doi.org/10.1016/j.csbj.2021.11.023

Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., & Abdul Rehman. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 1-11. https://doi.org/10.1016/j.jksus.2021.101538

Zhang, C., Mu, Y., Li, T., Jin, F. J., Jin, C. Z., Oh, H. M., . . . Jin, L. (2023). Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the “Plastisphere”. Front Microbiol, 14, 1181967. https://doi.org/10.3389/fmicb.2023.1181967

Zhang, N., Ding, M., & Yuan, Y. (2022). Current Advances in Biodegradation of Polyolefins. Microorganisms, 10(8). https://doi.org/10.3390/microorganisms10081537

Zhang, X., Feng, X., Lin, Y., Gou, H., Zhang, Y., & Yang, L. (2023). Degradation of polyethylene by Klebsiella pneumoniae Mk-1 isolated from soil. Ecotoxicol Environ Saf, 258, 114965. https://doi.org/10.1016/j.ecoenv.2023.114965

Zhang, Y., Pedersen, J. N., Eser, B. E., & Guo, Z. (2022). Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol Adv, 60, 107991. https://doi.org/10.1016/j.biotechadv.2022.107991

Zichittella, G., Ebrahim, A. M., Zhu, J., Brenner, A. E., Drake, G., Beckham, G. T., . . . Román-Leshkov, Y. (2022). Hydrogenolysis of Polyethylene and Polypropylene into Propane over Cobalt-Based Catalysts. JACS Au, 2(10), 2259-2268. https://doi.org/10.1021/jacsau.2c00402

Downloads

Published

2023-09-16

How to Cite

Raoufi, H., Taqwa, S., & Fagiryaar, F. (2023). Enzymatic Degradation of Polyethylene and Polyethylene Terephthalate: A Mini Review. American Journal of Environment and Climate, 2(3), 41–50. https://doi.org/10.54536/ajec.v2i3.1937