Potent Antioxidant Agents: Dithiocarbamates of Ω-Substituted (2-Naphthyloxy) Alkanes

Authors

  • Sadaf Zaidi Department of Applied Chemistry, Amity School of Applied Sciences, Amity University Uttar Pradesh (AUUP), Lucknow Campus, Lucknow-226028, U. P. India
  • Devdutt Chaturvedi Department of Chemistry, School of Physical & Material Sciences, Mahatma Gandhi Central University (MGCU), Motihari, Bihar, India
  • Nitin Srivastava Department of Applied Chemistry, Amity School of Applied Sciences, Amity University Uttar Pradesh (AUUP), Lucknow Campus, Lucknow-226028, U. P. India
  • Manisha Shukla cDepartment of Chemistry, Babu Banarasi Das National Technology & Management, Lucknow-227105, U. P India

DOI:

https://doi.org/10.54536/ajcp.v2i2.1686

Keywords:

Amines, Antioxidant, Dithiocarbamates, Condensation, Catalyst

Abstract

A series of dithiocarbamates of ω-substituted (2-naphthyloxy) alkanes (4-48) was tested for antioxidant activity by radicals 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay, DPPH assay (1,1-diphenyl-2-picryl-hydrazyl), O2. (NET) assay and ROO. (TRAP) assay against curcumin and vitamin C as standard drugs. Most of these compounds have shown promising activities, such compounds are 11, 12, 13, 25, 26, 27, 28, 41, 42, and 43. The series was synthesized by the condensation reaction of 2-(2-chloro-alkoxy)-naphthalene with different types of aliphatic, alicyclic, aromatic, heterocyclic primary, as well as secondary amines to develop dithiocarbamates of ω-substituted (2-naphthyloxy) alkanes.

Downloads

Download data is not yet available.

Author Biographies

Devdutt Chaturvedi, Department of Chemistry, School of Physical & Material Sciences, Mahatma Gandhi Central University (MGCU), Motihari, Bihar, India

Head of Department

Nitin Srivastava, Department of Applied Chemistry, Amity School of Applied Sciences, Amity University Uttar Pradesh (AUUP), Lucknow Campus, Lucknow-226028, U. P. India

Assistant Professor

Manisha Shukla, cDepartment of Chemistry, Babu Banarasi Das National Technology & Management, Lucknow-227105, U. P India

Head of Chemistry

References

Aucagne, V. Lorin, C. Tatibouet, A. & Rollin, P. (2005). Regioselective Michael-induced cyclisation of γ- and δ-hydroxy vinyl sulphides and vinyl dithiocarbamates. Tetrahedron Letters, 46, 4349-4352. https://doi.org/10.1016/j.tetlet.2005.04.112

Bacharaju, K. Jambula, S. R. Sivan, S. Tangeda, S. J. & Manga, V. (2012). Design, synthesis, molecular docking, and biological evaluation of new dithiocarbamates substituted benzimidazole and chalcones as possible chemotherapeutic agents. Biomedicinal Medicinal Chemical Letters, 22, 3274-3277. https://doi.org/10.1016/j.bmcl.2012.03.018

Bahrin, L. J. Jones, P. J. & Hopf, H. (2012). Tricyclic flavonoids with 1,3-dithiolium substructure. Beilstein Journal of Organic Chemistry, 8, 1999-2003. https://doi.org/10.3762/bjoc.8.226

Cao, S. L. Feng, Y. P. Zheng, X. L. Jiang, Y. Y. Zhang, M. Wang, Y. & Xu M. (2006). Synthesis of substituted benzylamino-and heterocyclylmethylamino carbodithioate derivatives of 4-(3H)-quinazolinone and their cytotoxic activity. Archiv der Pharmazie. Chemistry in Life Sciences, 339, 250-254. https://doi.org/10.1002/ardp.200500264

Cao, S. L. Han, Y. Yuan, C. Z. Wang, Y. Xiahou, Z. K. Liao, J. Gao, R. T. Mao, B. B. Zhao, B. L. Li, Z. F. & Xu, X. (2013). Synthesis and antipoliferative activity of 4-substituted-piperazine-1-carbodothioate derivatives of 2,4-diaminoqinazoline. European Journal of Medicinal Chemistry, 64, 401-409. https://doi.org/10.1016/j.ejmech.2013.04.017

Cao, S. L. Wang, Y. Zhu, L. Liao, J. Guo, Y. W. Chen, L. L. Liu, H. Q. & Xu, X. (2010). Synthesis and cytotoxic activity of N-((2-methyl-4(3H)-quinazolinon-6-yl) methyl) dithiocarbamates. European Journal of Medicinal Chemistry, 45, 3850-3857. https://doi.org/10.1016/j.ejmech.2010.05.038

Charati, F. R. Hossaini, Z. & Hajinasiri, R. (2012). Solvent-free multicomponent reactions of dithiocarbamates, activated acetylenes and isocyanide. Journal of Applied Chemistry Research, 20, 54-59.

Coro, J. Atherton, R. Little, S. Wharton, H. Yardley, V. Alvarez, A. Suarez, M. & Perez, R. (2006). Rodriguez H. Alkyl-linked bis-THTT derivatives as potent in vitro trypanocidal agents. Biorganic Medicinal Chemistry, 16, 1312-1315. http://dx.doi.org/10.1016/j.bmcl.2005.11.060

Das, P. Kumar, C. K. Kumar, N. Innus, M. Iqbal, J. & Srinivas, N. (2008). Dithiocarbamate and CuO promoted one-pot synthesis of 2-(N-substituted)-aminobenzimidazoles and related heterocycles. Science Direct, 49, 992 -995. http://dx.doi.org/10.1016%2Fj.tetlet.2007.12.022

Greene, T.W. & Wuts, T. P. G. M. (2006). Protective Group in Organic Synthesis. John Wiley and Sons Inc, 4th Ed. ISBN: 978-0-470-05348-5.

Halimjani, A. Z. Pourshojaei, Y. & Saidi, M. R. (2009). Highly efficient and catalyst-free synthesis of unsymmetrical thioureas under solvent-free conditions. Tetrahedron Letters, 50, 32-34. http://dx.doi.org/10.1016/j.tetlet.2008.10.063

Halls, D. J. (1969). The properties of dithiocarbamates. Mikrochemica Acta, 57, 62-77. https://doi.org/10.1007/BF01216666

He, X. Y. Lu, L. Qiu, J. Zou, P. Yu, F. Jiang, X. K. Li, L. Jiang, S. Liu, S. & Xie, L. (2013). Small molecule fusion inhibitors: design, synthesis and biological evaluation of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxoazolidinylidene) methyl)-N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrroles and related derivatives targeting HIV-1 gp41. Bioorganic Medicinal Chemistry, 21, 7539-7548. https://doi.org/10.1016/j.bmc.2013.04.046

Heda, K. M. & Deshmukh, S. P. (2011). Synthesis and antimicrobial activity of 4-aryl-5-hepta-O-benzoyl-β-D-lactosylimino-3-thio-1,2,4-dithioazolidine [hydrochloride]. International Journal of Chemical Science, 9, 1705-1710.

Horita, Y. Takii, T. Kuroishi, R. Chika, T. Ogawa, K. Kremer, L. Sato, Y. Lee, Y. Hassegawa, T. & Onozaki, K. (2011). Synthesis and evaluation of anti-tubercular activity of new dithiocarbamate sugar derivative. Biorganic Medicinal Chemistry, 21, 899-903. https://doi.org/10.1016/j.bmcl.2010.12.084

Hou, X. Ge, Z. Wang, T. Guo, W. Wu, J. Cui, J. Lai, C. & Li, R. (2011). Synthesis, and structure-activity relationship of a novel class of dithiocarbamic acid esters as anticancer agent. Archiv der Pharmazie. Chemistry in Life Sciences, 11, 320-332. https://doi.org/10.1002/ardp.201000259

Jamir, J. Sinha, U. B. Nath, J. & Patel, B. K. (2012). Environmentally benign one-pot synthesis of cyannamide from dithiocarbamates using I2 and H2O2. Synthetic Communication, 4, 951-958. https://doi.org/10.1080/00397911.2010.532276

Jangir, S. Bala, V. Lal. N, Kumar, L. Sarswat, A. Kumar, A. Hamidullah, S. K. S. Sharma, V. Verma, V. Maikhuri, J. P. Konwar, R. Gupta, G. & Sharma, V. L. (2014). Novel alkylphospholipid-DTC hybrids as promising agents against endocrine related cancers acting via modulation of Akt-pathway. European Journal of Medicinal Chemistry, 85, 638-647. https://doi.org/10.1016/j.ejmech.2014.08.028

Khalizadeh, M. A. Hossaini, Z. Baradaran, M. A. & Hassania, A. (2010). A novel isocyanide-based three-component reaction: a facile synthesis of substituted 2H-pyran-3,4-dicarboxylates. Tetrahedron Letters, 66, 8464-8467. https://doi.org/10.1016/J.TET.2010.08.041

Kienle, M. Unsinn, A. & Knoche, P. (2010). Synthesis of dithiobenzophenes and related class of heterocycles by using functionalized dithiocarbamates. Angewandte Chemie, 49, 4751-4754. https://doi.org/10.1002/anie.201001025

Kumar, N. K. Sreeramamurthy, K. Palle, S. Mukkanti, K. & Das, P. (2010). Dithiocarbamate and DBU-promoted amide bond formation under microwave condition. Tetrahedron Letters, 51, 899-902. https://doi.org/10.1016/j.tetlet.2009.11.127

Liu, P. Li, C. Zhang, J. & Xu, X. (2013). Facile and versatile synthesis of alkyl and aryl isothiocyanates by using triphosgene and coolent. Synthetic Communication, 43, 3342-3351. http://dx.doi.org/10.1080/00397911.2013.783600

Marakov, V. Riabova, O. B. Yuschenko, A. Urlyapova, N. Daudova, A. Ziplef, P. F. & Mollmann, U. (2006). Synthesis and antileprosy activity of some dialkyldithiocarbamates. Journal of Antimicrobial Chemotherapy, 57, 1134-1138. https://doi.org/10.1021/jm9509556

Mayer, J. P. Lewis, G. S. & Zhang, M. J. (1997). Solid phase synthesis of quinazolines. Tetrahedron Letters, 38, 8445-8448. https://doi.org/10.1016/S0040-4039(97)10276-3.

Moellering, D. Mcandrew, J. Jo, H. Darley-Usmar, V. M. (1999). Effects of pyrrolidine dithiocarbamate on endothelial cells: protection against oxidative stress. Free Radical Biological & Medicinal Chemistry, 26, 1138–1145. https://doi.org/10.1016/s0891-5849(98)00300-1

Mohsin, U. A. (2014). Synthesis and biological evaluation of some new benzimidazole derivatives bearing dithiocarbamate moiety as potential cholinesterase inhibitors. Curkova Medical Journal, 39, 729-735. https://doi.org/10.1002/ardp.201200384

Orlinski, M. M. & Zimenkovskii, B. S. (1998). Synthesis and antioxidant activity of dithiocarbamates based on aliphatic diamines. Pharmaceutical Chemistry Journal, 32, 516-518.

Ozkanli, F. Ozkanli, A. G. Ozadali, G. K. Yildirim, E. & Erol, K. (2010). Synthesis, and pharmacology of some new N, N-Disubstituted Dithiocarbamate. FABAD Journal of Pharmaceutical Science, 35,19-27.

Shaw, S. J. (2008). The structure activity relationship of discodermolide analogues. Mini-Review Medicinal Chemistry, 8, 276-84. https://doi.org/10.2174/138955708783744137

Tandel, S. K. Rajappa, S. & Pansare, S. S. V.(1993). Conversion of thiocarbamates to carbamates. Tetrahedron, 49, 7479-7486.

Yang, L. Y. Cui, K. Lu, W. Luo, W. Wang, J. Huang, J. & Guo, C. (2011). Synthesis and Antimalarial activity of novel Dihydro-Artemisinin Derivatives. Molecules,16, 4527-4538. https://doi.org/10.3390/molecules16064527

Zahram, M. A. H. Salem, T. A. R. Samaka, R. M. Agwa, H. S. & Awad, A. K. (2008). Design, synthesis and antitumor evaluation of novel thalidomide dithiocarbamate and dithioate analogs against ehrilch ascites carcinoma. Biorganic Medicinal Chemistry, 16, 9708-9718. https://doi.org/10.1016/j.bmc.2008.09.071

Zahran, M. A. H. Salem, T. A. R. Samaka, R. M. Agwa, H. S. & Awad, A. R. (2008). Design, synthesis, and antitumor evaluation of novel thalidomide dithiocarbamate and dithioate analogs against Ehrlich ascites carcinoma-induced solid tumor in Swiss albino mice. Bioorganic & Medicinal Chemistry, 16, 9708–9718. https://doi.org/10.1016/j.bmc.2008.09.071

Zaidi, S. Chaturvedi, A. K. Singh, N. & Chaturvedi, D. (2017). Triton-B catalyzed, efficient and solvent-free approach for the synthesis of dithiocarbamates. Current Chemical Letters, 6, 143-150. http://dx.doi.org/10.5267/j.ccl.2017.7.001

Zhu, B. Z. Carr, A. C. & Frei, B. (2002). Pyrrolidine dithiocarbamate is a potent antioxidant againsthypochlorous acid-induced protein damage. FEBS Letters, 532, 80-84. https://doi.org/10.1016/s0014-5793(02)03637-2

Zou, Y. Yu, S. Li, R. Zhao, Q. Li, X. Wu, M. Huang, T. Chai, X. Hu, H. and Wu, Q. (2014). Synthesis, antifungal activities and molecular docking studies of novel 2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl) propyl dithiocarbamates. European Journal of Medicinal Chemistry, 74, 366-374. https://doi.org/10.3390%2Fmolecules23102457

Downloads

Published

2023-07-13

How to Cite

Zaidi, S., Chaturvedi, D., Srivastava, N., & Shukla, M. (2023). Potent Antioxidant Agents: Dithiocarbamates of Ω-Substituted (2-Naphthyloxy) Alkanes. American Journal of Chemistry and Pharmacy, 2(2), 86–98. https://doi.org/10.54536/ajcp.v2i2.1686