Unveiling the SARS-CoV-2 Spike Protein: A Comparative Analysis of Vaccine Development Approaches and Glycosylation Implications

Authors

  • Leonel C. Mendoza College of Teacher Education, Mindoro State University-Calapan City Campus, Philippines

DOI:

https://doi.org/10.54536/ajcp.v2i2.1634

Keywords:

Coronavirus, COVID-19 Vaccines, COVID-19 Vaccine Development, Ncov-2019 Vaccines, Protein Glycosylation, S Protein

Abstract

In December 2019, a mysterious pneumonia-causing sickness frightened the world. SARS-CoV-2 caused the acute respiratory illness. Since March 11, 2020, 220,563,227 COVID-19 cases and 4,565,483 deaths have been reported worldwide as of October 2021. SARS-CoV-2, like all coronavirus, appears to have crowns due to its S proteins and enters host cells using highly glycosylated spike (S) proteins. S1 and S2 are SARS-CoV-2 spike protein subunits. S2 controls transmembrane fusion, while S1 controls receptor binding. Antibody-mediated neutralization targets SARS-CoV-2 spike (S) proteins, which are essential for viral entry and fusion. This paper summarized how S protein was used in newly created and distributed SARS-CoV-2 vaccines and the implications for future advancements given the emergence of more lethal SARS-CoV-2 variants in this paper. It also discussed the role of S protein glycosylation in the viral entry and binding mechanism of SARS-CoV-2 and the implications for developing adaptive immunity and vaccines. The review was carried out through a deductive search strategy with keywords: COVID-19 vaccines, nCoV-2019 vaccines, coronavirus, COVID-19 vaccine development, S protein, and protein glycosylation using Google Scholar. The emergence of more transmissible and potentially more lethal SARS-CoV-2 variants, such as the Delta variant, highlights the need for continued research on vaccine development. Future research should focus on understanding the mechanism of the spike protein and how vaccines can effectively target the mutated regions. Continued monitoring and adaptation of vaccination strategies are essential to control the ongoing COVID-19 pandemic.

Downloads

Download data is not yet available.

References

Altman, M. O., Angel, M., Košík, I., Trovão, N. S., Zost, S. J., Gibbs, J. S., ... & Yewdell, J. W. (2019). Human influenza A virus hemagglutinin glycan evolution follows a temporal pattern to a glycan limit. MBio, 10(2), e00204-19.

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., ... & Zaks, T. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine, 384(5), 403-416.

Bagdonaite, I., & Wandall, H. H. (2018). Global aspects of viral glycosylation. Glycobiology, 28(7), 443-467.

Belouzard, S., Chu, V. C., & Whittaker, G. R. (2009). Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proceedings of the National Academy of Sciences, 106(14), 5871-5876.

Bernal, J. L., Andrews, N., Gower, C., Gallagher, E., Simmons, R., Thelwall, S., ... & Ramsay, M. (2021). Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (delta) variant. New England Journal of Medicine. 385(7), 585-594.

Casalino, L., Gaieb, Z., Dommer, A. C., Harbison, A. M., Fogarty, C. A., Barros, E. P., ... & Amaro, R. E. (2020). Shielding and beyond: the roles of glycans in SARS-CoV-2 spike protein. BioRxiv.

Chen, Y. L. Q., Guo, D.(2020) Emerging coronaviruses: Genome structure, replication, parthenogenesis. Journal of Virology, 92, 418423.

Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Perrett, H. R., Painter, C. D., ... & Esko, J. D. (2020). SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 183(4), 1043-1057.

Crackower, M. A., Sarao, R., Oudit, G. Y., Yagil, C., Kozieradzki, I., Scanga, S. E., ... & Penninger, J. M. (2002). Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 417(6891), 822-828.

Crispin, M., & Doores, K. J. (2015). Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design. Current opinion in virology, 11, 63-69.

Doores, K. J. (2015). The HIV glycan shield as a target for broadly neutralizing antibodies. The FEBS journal, 282(24), 4679-4691.

Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nature Reviews Microbiology, 7(3), 226-236.

European Centre for Disease Prevention and Control. (2021). Threat assessment brief: emergence of SARS-CoV-2 B. 1.617 variants in India and situation in the EU/EEA.

Fehr, A. R., Perlman, S., Maier, H. J., Bickerton, E., & Britton, P. (2015). An overview of their replication and pathogenesis; section 2 genomic organization. Methods in Molecular Biology, 1282, 1-23.

Flanagan, K. L., Best, E., Crawford, N. W., Giles, M., Koirala, A., Macartney, K., ... & Wen, S. C. (2020). Progress and pitfalls in the quest for effective SARS-CoV-2 (COVID-19) vaccines. Frontiers in immunology, 11, 2410.

Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., ... & Hamlyn, J. (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet, 396(10249), 467-478.

Gallagher, T. M., & Buchmeier, M. J. (2001). Coronavirus spike proteins in viral entry and pathogenesis. Virology, 279(2), 371-374.

Gallian, P., Pastorino, B., Morel, P., Chiaroni, J., Ninove, L., & de Lamballerie, X. (2020). Lower prevalence of antibodies neutralizing SARS-CoV-2 in group O French blood donors. Antiviral research, 181, 104880.

Hasoksuz, M., Sreevatsan, S., Cho, K. O., Hoet, A. E., & Saif, L. J. (2002). Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus research, 84(1-2), 101-109.

Hasöksüz, M., Kiliç, S., & Saraç, F. (2020). Coronaviruses and sars-cov-2. Turkish journal of medical sciences, 50(SI-1), 549-556.

Hoffmann, M., Kleine-Weber, H., Krüger, N., Müller, M., & Drosten, C. Pöhlmann, VOP (2020). The novel coronavirus (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., ... & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 181(2), 271-280.

Huang, J., Cao, Y., Du, J., Bu, X., Ma, R., & Wu, C. (2007). Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine, 25(39-40), 6981-6991.

Hütter, J., Rödig, J. V., Höper, D., Seeberger, P. H., Reichl, U., Rapp, E., & Lepenies, B. (2013). Toward animal cell culture–based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicity. The Journal of Immunology, 190(1), 220-230.

Iversen, P. L., & Bavari, S. (2021). Inactivated COVID-19 vaccines to make a global impact. The Lancet Infectious Diseases, 21(6), 746-748.

Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., ... & Beigel, J. H. (2020). An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine.

Janssen Biotech. (2021). COVID-19 Vaccine Ad26.COV2.S. Sponsor Briefing Document (Vaccines and Related Biological Products Advisory Committee, 2021).

Johnson, B. A., Xie, X., Kalveram, B., Lokugamage, K. G., Muruato, A., Zou, J., ... & Menachery, V. D. (2020). Furin cleavage site is key to SARS-CoV-2 pathogenesis. BioRxiv.

Karikó, K., Muramatsu, H., Welsh, F. A., Ludwig, J., Kato, H., Akira, S., & Weissman, D. (2008). Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular therapy, 16(11), 1833-1840.

Keech, C., Albert, G., Cho, I., Robertson, A., Reed, P., Neal, S., ... & Glenn, G. M. (2020). Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New England Journal of Medicine, 383(24), 2320-2332.

Kowalzik, F., Schreiner, D., Jensen, C., Teschner, D., Gehring, S., & Zepp, F. (2021). mRNA-Based Vaccines. Vaccines, 9(4), 390.

Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., ... & Penninger, J. M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature medicine, 11(8), 875-879.

Lenza, M. P., Oyenarte, I., Diercks, T., Quintana, J. I., Gimeno, A., Coelho, H., ... & Ereño-Orbea, J. (2020). Structural characterization of N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and their interactions with human lectins. Angewandte Chemie International Edition, 59(52), 23763-23771.

Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., ... & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454.

Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309(5742), 1864-1868.

Li, W., Hulswit, R. J., Widjaja, I., Raj, V. S., McBride, R., Peng, W., ... & Bosch, B. J. (2017). Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences, 114(40), E8508-E8517.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine.

Li, X., Wang, W., Zhao, X., Zai, J., Zhao, Q., Li, Y., & Chaillon, A. (2020). Transmission dynamics and evolutionary history of 2019-nCoV. Journal of medical virology, 92(5), 501-511.

Li, Q., Wu, J., Nie, J., Zhang, L., Hao, H., Liu, S., ... & Wang, Y. (2020). The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell, 182(5), 1284-1294.

Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S., & Zhou, Q. (2021). A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Central Science, 7(4), 512-533.

Liu, L., Fang, Q., Deng, F., Wang, H., Yi, C. E., Ba, L., ... & Chen, Z. (2007). Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus. Journal of virology, 81(9), 4694-4700.

Logunov, D. Y., Dolzhikova, I. V., Zubkova, O. V., Tukhvatullin, A. I., Shcheblyakov, D. V., Dzharullaeva, A. S., ... & Gintsburg, A. L. (2020). Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. The Lancet, 396(10255), 887-897.

Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., Dzharullaeva, A. S., ... & Gam-COVID-Vac Vaccine Trial Group. (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet, 397(10275), 671-681.

Lowe, J. B. (2002). Glycosylation in the control of selectin counter-receptor structure and function. Immunological reviews, 186(1), 19-36.

Lundstrom, K. (2019). RNA viruses as tools in gene therapy and vaccine development. Genes, 10(3), 189.

Lundstrom, K. (2020). Application of viral vectors for vaccine development with a special emphasis on COVID-19. Viruses, 12(11), 1324.

McIntosh, K., & Peiris, J. S. M. (2009). Coronaviruses. In Clinical Virology, Third Edition (pp. 1155-1171). American Society of Microbiology.

Millet, J. K., & Whittaker, G. R. (2015). Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus research, 202, 120-134.

Olson, D. R., Huynh, M., Fine, A., Baumgartner, J., Castro, A., Chan, H. T., ... & Van Wye, G. (2020). Preliminary estimate of excess mortality during the COVID-19 outbreak—New York City, March 11–May 2, 2020.

Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., ... & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 217, 345-351.

Pedersen, S. F., & Ho, Y. C. (2020). SARS-CoV-2: a storm is raging. The Journal of clinical investigation, 130(5), 2202-2205.

Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: update on Coronaviruses post-SARS: update on. Nature Reviews Microbiology, 7(6), 439-50.

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine.

Raizada, M. K., & Ferreira, A. J. (2007). ACE2: a new target for cardiovascular disease therapeutics. Journal of cardiovascular pharmacology, 50(2), 112-119.

Rauch, S., Jasny, E., Schmidt, K. E., & Petsch, B. (2018). New vaccine technologies to combat outbreak situations. Frontiers in immunology, 9, 1963.

Reis, C. A., Tauber, R., & Blanchard, V. (2021). Glycosylation is a key in SARS-CoV-2 infection. Journal of Molecular Medicine, 1-9.

Robson, B. (2020). Bioinformatics studies on a function of the SARS-CoV-2 spike glycoprotein as the binding of host sialic acid glycans. Computers in biology and medicine, 122, 103849.

Sadarangani, M., Marchant, A., & Kollmann, T. R. (2021). Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nature Reviews Immunology, 1-10.

Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A. M., ... & Schuitemaker, H. (2021). Interim results of a phase 1–2a trial of Ad26. COV2. S Covid-19 vaccine. New England Journal of Medicine, 384(19), 1824-1835.

Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 1-22.

Shajahan, A., Pepi, L. E., Rouhani, D. S., Heiss, C., & Azadi, P. (2021). Glycosylation of SARS-CoV-2: structural and functional insights. Analytical and bioanalytical chemistry, 1-15.

Simmons, G., Reeves, J. D., Rennekamp, A. J., Amberg, S. M., Piefer, A. J., & Bates, P. (2004). Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences, 101(12), 4240-4245.

Simmons, G., Gosalia, D. N., Rennekamp, A. J., Reeves, J. D., Diamond, S. L., & Bates, P. (2005). Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proceedings of the National Academy of Sciences, 102(33), 11876-11881.

Simmons, G., Zmora, P., Gierer, S., Heurich, A., & Pöhlmann, S. (2013). Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral research, 100(3), 605-614.

Song, W., Gui, M., Wang, X., & Xiang, Y. (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS pathogens, 14(8), e1007236.

Sternberg, A., & Naujokat, C. (2020). Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life sciences, 118056.

Tortorici, M. A., Walls, A. C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., & Veesler, D. (2019). Structural basis for human coronavirus attachment to sialic acid receptors. Nature structural & molecular biology, 26(6), 481-489.

Verma, S. (2020). The Sialoside-Binding Pocket of SARS-CoV-2 Spike Glycoprotein Structurally Resembles MERS-CoV.

Vlasova, A. N., Zhang, X., Hasoksuz, M., Nagesha, H. S., Haynes, L. M., Fang, Y., ... & Saif, L. J. (2007). Two-way antigenic cross-reactivity between SARS-coronavirus (CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein. Journal of Virology.

Wadman, M. (2020). The long shot. https://web.archive.org/web/20201214123056id_/https://science.sciencemag.org/content/sci/370/6517/649.full.pdf

Wang, S., Chou, T. H. W., Sakhatskyy, P. V., Huang, S., Lawrence, J. M., Cao, H., ... & Lu, S. (2005). Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. Journal of virology, 79(3), 1906-1910.

Weiss, S. R., & Leibowitz, J. L. (2011). Coronavirus pathogenesis. Advances in virus research, 81, 85-164.

Walsh, E. E., Frenck Jr, R. W., Falsey, A. R., Kitchin, N., Absalon, J., Gurtman, A., ... & Gruber, W. C. (2020). Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. New England Journal of Medicine, 383(25), 2439-2450.

Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S., & Crispin, M. (2020). Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 369(6501), 330-333.W

WHO. (n.d.). COVID-19 vaccine tracker and landscape. World Health Organization. Retrieved September 13, 2021, from https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines

Wolfert, M. A., & Boons, G. J. (2013). Adaptive immune activation: glycosylation does matter. Nature chemical biology, 9(12), 776-784.

World Health Organization. (2021, September). Weekly operational update on COVID-19- 6 September 2021(71). https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19---6-september-2021

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., ... & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260-1263.

Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444-1448.

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273.

Zhou, Q., & Qiu, H. (2019). The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. Journal of pharmaceutical sciences, 108(4), 1366-1377.

Zhao, X., Chen, H., & Wang, H. (2021). Glycans of SARS-CoV-2 spike protein in virus infection and antibody production. Frontiers in Molecular Biosciences, 8, 53.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., ... & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine.

Zisman, L. S., Keller, R. S., Weaver, B., Lin, Q., Speth, R., Bristow, M. R., & Canver, C. C. (2003). Increased angiotensin-(1-7)–forming activity in failing human heart ventricles: Evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation, 108(14), 1707-1712.

Zost, S. J., Parkhouse, K., Gumina, M. E., Kim, K., Perez, S. D., Wilson, P. C., & Hensley, S. E. (2017). Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proceedings of the National Academy of Sciences, 114(47), 12578-12583.

Downloads

Published

2023-07-03

How to Cite

Mendoza, L. C. (2023). Unveiling the SARS-CoV-2 Spike Protein: A Comparative Analysis of Vaccine Development Approaches and Glycosylation Implications. American Journal of Chemistry and Pharmacy, 2(2), 66–73. https://doi.org/10.54536/ajcp.v2i2.1634