Beyond Crop Raids: Socio-Ecological Resilience and Hidden Costs of Human-Monkey Conflict In Vervets around Mount Galim-Tignère, Cameroon

Authors

  • Ngnaniyyi Abdoul Applied Biology and Ecology Research Unit (URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon https://orcid.org/0000-0002-3897-3057
  • Penanjo Stéphanie Laboratory of Botany and Plant Ecology (LBE), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, P. O. Box 812, Yaoundé, Cameroon
  • Mohamadou Dalailou Housseini Higher Institute of Agriculture, Forestry, Water and Environment (ISABEE), University of Ebolowa, P.O. Box 118, Ebolowa, Cameroon
  • Tagne Takoutchouang Rick Research Unit of the Scientific and Educational Centre in Specialized Informatics, Department of Electronic Computer Engineering, Faculty of Computer Technology, Ryazan State Radioengineering University, Gagarina St. 59/1, Ryazan, 391000, Russia https://orcid.org/0009-0006-1744-5614
  • Seino Richard Akwanjoh School of Health and Medical Sciences, Catholic University of Cameroon (CATUC) Bamenda, P.O. Box 762, Bamenda, Northwest Region, Cameroon

DOI:

https://doi.org/10.54536/jwc.v2i1.6251

Keywords:

Chlorocebus Pygerythrus, Crop Raids, Diversification Of Livelihoods, Human-Wildlife Conflict

Abstract

Around Mount Galim in Cameroon and in 113 households, this study on human-vervet monkey (Chlorocebus pygerythrus) conflict investigated methods of protection against raids as well farmers’ perceptions and food security. The results reveal, first, that raids caused 88, 261 USD in annual losses, or an average of 39.0% of agricultural products looted by monkeys in each of five villages concerned. Among the six protection methods, five crackers were the most popular, with 1.58 firecrackers/household/24 h used, even though this strategy is perceived as moderately ineffective and costly (122, 90/year/h/week). Secondly, farmers ‘perceptions were dichotomous, with 42.5% negative and 42.5% positive responses, showing no correlation with the duration of the conflict. Thirdly, no households are exposed to food insecurity despite significant agricultural losses. In reality, 49.8% and 58.2% of households derive their livelihood from livestock farming and trade respectively, with agriculture as means of subsistence accounting for only 49.8% of households, which probably explains the surprising socio-ecological resilience observed. The diversity of livelihoods has had a cushioning effect inhibiting the direct collapse of the local food system. In order to ensure sustainable coexistence, an integrated management frank calls for strengthening livelihood diversification, implementing alternative technics to mitigate raids, and, above all, prioritizing early warning systems. 

Author Biographies

  • Ngnaniyyi Abdoul, Applied Biology and Ecology Research Unit (URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon

    Department of Animal Biology, Faculty of Science University of Dschang P.O. Box 67, Dschang, Cameroon, Dr.

  • Penanjo Stéphanie, Laboratory of Botany and Plant Ecology (LBE), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, P. O. Box 812, Yaoundé, Cameroon

    Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon, 

    Dr. 

  • Mohamadou Dalailou Housseini, Higher Institute of Agriculture, Forestry, Water and Environment (ISABEE), University of Ebolowa, P.O. Box 118, Ebolowa, Cameroon

    University of Ebolowa, P.O. Box 118, Ebolowa, Cameroon

    Msci.

  • Tagne Takoutchouang Rick, Research Unit of the Scientific and Educational Centre in Specialized Informatics, Department of Electronic Computer Engineering, Faculty of Computer Technology, Ryazan State Radioengineering University, Gagarina St. 59/1, Ryazan, 391000, Russia

     Department of Electronic Computer Engineering, Faculty of Computer Technology, Ryazan State Radioengineering University, Gagarina St. 59/1, Ryazan, 391000, Russia

    Msci. 

  • Seino Richard Akwanjoh, School of Health and Medical Sciences, Catholic University of Cameroon (CATUC) Bamenda, P.O. Box 762, Bamenda, Northwest Region, Cameroon

    Bamenda, P.O. Box 762, Bamenda, Northwest Region, Cameroon

    Professor 

References

Asmamaw, B., Adamu, M., and Mamo, Y. (2025). Feeding ecology of the Colobus monkey (Colobus guereza, Ruppell 1835) in the Bonga Forest, southwestern Ethiopia. Journal of Wildlife and Conservation, 1(1), 29–36. Retrieved from https://journals.e-palli.com/home/index.php/jwc/article/view/4170

Barua, M., Bhagwat, S. A., & Jadhav, S. (2013). The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biological Conservation, 157, 309–316. https://doi.org/10.1016/j.biocon.2012.07.014

Blanco, J. A., & Canals, R. M. (2024). 10a Escuela de Verano de Ecología de Navarra: Gestión de los paisajes forestales ante un mundo cambiante. Ecosistemas, 2911. https://doi.org/10.7818/ECOS.2911

Bruno, D., Mora, R., Estal, G., Pujante, N., Audisio, C., Giménez, A., & Jiménez-Franco, M. V. (2025). ¿Drenajes de carreteras o pasos de fauna?: la conectividad oculta de vertebrados terrestres bajo infraestructuras lineales de transporte. Ecosistemas, 34(1), 2882. https://doi.org/10.7818/ECOS.2882

Dickman, A. J. (2010). Complexities of conflict: the importance of considering social factors for effectively resolving human–wildlife conflict. Animal Conservation, 13(5), 458–466. https://doi.org/10.1111/j.1469-1795.2010.00368.x

Fuentes-Lamas, D. L., Silla, F., & Sereno-Cadierno, J. (2025). Conviviendo en el límite: El papel del solapamiento temporal entre depredador-presa en la coexistencia de mesocarnívoros en remanentes de bosques de ribera. Ecosistemas, 34(1), 2880. https://doi.org/10.7818/ECOS.2880

Gabellone, C., Armendano, A., & González, A. (2024). Estudio de la diversidad taxonómica y temporal de arañas de cultivos de alcaucil Cynara scolymus L. Ecosistemas, 33(3), 26–51.

Galán Díaz, J., Bachman, S. P., Forest, F., Escudero, M., Rotton, H., & Larridon, I. (2025a). Identifying conservation priorities of a pantropical plant lineage: a case study in Scleria (Cyperaceae). Ecosistemas, 2847. https://doi.org/10.7818/ECOS.2847

Galán Díaz, J., Bachman, S. P., Forest, F., Escudero, M., Rotton, H., & Larridon, I. (2025b). Identifying conservation priorities of a pantropical plant lineage: a case study in Scleria (Cyperaceae). Ecosistemas, 2847. https://doi.org/10.7818/ECOS.2847

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Herrera, C. M. (2024). Plant phenotypes as trajectories: 38-yr monitoring reveals that shape of lifetime fecundity schedule is under selection in a long-lived shrub. Ecosistemas, 2834. https://doi.org/10.7818/ECOS.2834

Hill, C. M., & Wallace, G. E. (2012). Crop protection and conflict mitigation: reducing the costs of living alongside non-human primates. Biodiversity and Conservation, 21(10), 2569–2587. https://doi.org/10.1007/s10531-012-0318-y

Kansky, R., Kidd, M., & Knight, A. T. (2016). A wildlife tolerance model and case study for understanding human wildlife conflicts. Biological Conservation, 201, 137–145. https://doi.org/10.1016/j.biocon.2016.07.002

Kiffner, C., Kioko, J., Baylis, J., Beck, J., Bösch, L., & Brunner, C. (2020). Community-based conservation: Assessment of the use of and attitudes toward wildlife in a community conservation area in northern Tanzania. Journal of Environmental Management, 1(9), 33–49.

König, H. J., Kiffner, C., Kramer-Schadt, S., Fürst, C., Keuling, O., & Ford, A. T. (2020). Human–wildlife coexistence in a changing world. Conservation Biology, 34(4), 786–794. https://doi.org/10.1111/cobi.13513

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00863

López-Angulo, J., Pardavila Rodríguez, X., & Virgós, E. (2025). Evaluación del fototrampeo como método de estimación de abundancias en el tejón europeo Meles meles (Linnaeus, 1758). Ecosistemas, 2867. https://doi.org/10.7818/ECOS.2867

Mahadi, SMI (2025). Improving emergency management through AI-augmented central coordination: Comparative case studies in the United States, New Zealand, and Bangladesh. Journal of Wildlife and Conservation, 1(1), 37–43. Retrieved from: https://journals.e-palli.com/home/index.php/jwc/article/view/6094

Miller, J. R. B., Jhala, Y. V., & Jena, J. (2016). Livestock losses and hotspots of attack from tigers and leopards in Kanha Tiger Reserve, Central India. Regional Environmental Change, 16(S1), 17–29. https://doi.org/10.1007/s10113-015-0871-5

Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews, 82(4), 591–605. https://doi.org/10.1111/j.1469-185X.2007.00027.x

Naves, L., Orihuela, A., & Pascual-Rico, R. (2025). Fototrampeo en ecología: aplicaciones para la conservación y el estudio de la fauna. Ecosistemas, 34(1), 2985. https://doi.org/10.7818/ECOS.2985

Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge University Press. https://doi.org/10.1017/CBO9780511806384

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wallace, G. E., & Hill, C. M. (2012). Crop damage by primates: Quantifying the key parameters of crop-raiding events. PLoS ONE, 7(10), e46636. https://doi.org/10.1371/journal.pone.0046636

Yue, X., Zhang, T., & Li, Y. (2023). Effects of rainfall regime during the growing season on the annual plant communities in semiarid sandy land, northeast China. Global Ecology and Conservation, 43, e02456. https://doi.org/10.1016/j.gecco.2023.e02456

Downloads

Published

2026-01-19

How to Cite

Ngnaniyyi , A., Stéphanie, P. ., Housseini, M. D. ., Rick, T. T. ., & Akwanjoh, S. R. . (2026). Beyond Crop Raids: Socio-Ecological Resilience and Hidden Costs of Human-Monkey Conflict In Vervets around Mount Galim-Tignère, Cameroon. Journal of Wildlife and Conservation, 2(1), 10-19. https://doi.org/10.54536/jwc.v2i1.6251