Effect of Chicken Bone as Foaming Agent on the Structural and Mechanical Properties of Glass Foam
DOI:
https://doi.org/10.54536/jir.v2i3.3751Keywords:
Amber Glass, Chicken Bone, Foaming Agent, Glass Foam, Waste RecyclingAbstract
Amber glass is widely used to pack a large number of industrial products. However, its waste is disposed of into landfills, which results in serious environmental concerns, and only a small amount of it is either reused or recycled. Recycling the glass offers reduction in the landfills and hence minimizes the adverse environmental impact. This study follows the concept of recycling amber glass to produce glass foam that possesses high strength. The hard glass foam is produced by sintering pulverized pharmaceutical amber glass and chicken bones at 860˚C and 10 min. Chicken bones were used for the first time as a recycling material for producing glass foam. In this work different characterization techniques were used to investigate the mechanical and structural properties of the produced glass foam. The glass foam produced resulted into high values of flexural strength ranging from 15.90 ± 2.34 to 28.31 ± 1.62 MPa. The prepared glass foam, due to its unique properties such as high strength, sound absorption, heat insulation and shock-wave absorption, offers valuable insights into the world of material science.
References
Akai, T., Kuraoka, K., Chen, D., Yamamoto, Y., Shirakami, T., Urabe, K., & Yazawa, T. (2005). Leaching behavior of sodium from fine particles of soda–lime–silicate glass in acid solution. Journal of the American Ceramic Society, 88(10), 2962-2965.
Andreola, F., Barbieri, L., Corradi, A., & Lancellotti, I. (2007). CRT glass state of the art: A case study: Recycling in ceramic glazes. Journal of the European Ceramic Society, 27(2-3), 1623-1629.
Arulrajah, A., Disfani, M. M., Maghoolpilehrood, F., Horpibulsuk, S., Udonchai, A., Imteaz, M., & Du, Y. J. (2015). Engineering and environmental properties of foamed recycled glass as a lightweight engineering material. Journal of Cleaner Production, 94, 369-375.
ASTM, Test Method for Apparent Porosity in Cemented Carbides. (n.d.). Standard Test Method for Apparent Porosity in Cemented Carbides. ASTM International. https://doi.org/10.1520/b0276-05r10.
Bernardo, E., & Albertini, F. (2006). Glass foams from dismantled cathode ray tubes. Ceramics international, 32(6), 603-608.
Bernardo, E., Scarinci, G., & Hreglich, S. (2005). Foam glass as a way of recycling glasses from cathode ray tubes. Glass Science and Technology, 78(1), 7-11.
Bernardo, E., Scarinci, G., Hreglich, S., & Zangiacomi, G. (2007). Effect of time and furnace atmosphere on the sintering of glasses from dismantled cathode ray tubes. Journal of the European Ceramic Society, 27(2-3), 1637-1643.
Burnley, S. (2001). The impact of the European landfill directive on waste management in the United Kingdom. Resources, Conservation and Recycling, 32(3-4), 349-358.
Chen, B., Wang, K., Chen, X., & Lu, A. (2012). Study of foam glass with high content of fly ash using calcium carbonate as foaming agent. Materials Letters, 79, 263-265.
Chen, D., Masui, H., Miyoshi, H., Akai, T., & Yazawa, T. (2006). Extraction of heavy metal ions from waste colored glass through phase separation. Waste management, 26(9), 1017-1023.
Chen, J. F., Ding, H. M., Wang, J. X., & Shao, L. (2004). Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials, 25(4), 723-727.
Chen, M., Zhang, F. S., & Zhu, J. (2009). Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process. Journal of Hazardous Materials, 161(2-3), 1109-1113.
Clark, T. J., & Reed, J. S. (1986). Kinetic processes involved in the sintering and crystallization of glass powders. Journal of the American Ceramic society, 69(11), 837-846.
Colombo, P., Brusatin, G., Bernardo, E., & Scarinci, G. (2003). Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Current Opinion in Solid State and Materials Science, 7(3), 225-239.
Ducman, V., & Kovačević, M. (1997). The Foaming of Waste Glass. Key Engineering Materials, 132–136, 2264–2267. https://doi.org/10.4028/www.scientific.net/kem.132-136.2264.
Fernandes, H. R., Tulyaganov, D. U., & Ferreira, J. M. F. (2009). Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceramics international, 35(1), 229-235.
Gong, Y., Deng, W., Zhang, W., Yatongchai, C., Zou, Y., & Buchanan, R. C. (2015). Effect of a BaO-CuO-Bi2O3-B2O3 glass flux, and its processing on the dielectric properties of BaTiO3. Ceramics International, 41(1), 671-680.
Gong, Y., Dongol, R., Yatongchai, C., Wren, A. W., Sundaram, S. K., & Mellott, N. P. (2016). Recycling of waste amber glass and porcine bone into fast sintered and high strength glass foams. Journal of Cleaner Production, 112, 4534-4539.
Guo, H. W., Gong, Y. X., & Gao, S. Y. (2010). Preparation of high strength foam glass–ceramics from waste cathode ray tube. Materials letters, 64(8), 997-999.
Hicks, C., Dietmar, R., & Eugster, M. (2005). The recycling and disposal of electrical and electronic waste in China—legislative and market responses. Environmental impact assessment review, 25(5), 459-471.
Kingery, W. D. (1976). Introduction to ceramics. JohnWiley & Sons Publication.
König, J., Petersen, R. R., & Yue, Y. (2014). Influence of the glass–calcium carbonate mixture’s characteristics on the foaming process and the properties of the foam glass. Journal of the European Ceramic Society, 34(6), 1591-1598.
Llaudis, A. S., Tari, M. J. O., Ten, F. J. G., Bernardo, E., & Colombo, P. (2009). Foaming of flat glass cullet using Si3N4 and MnO2 powders. Ceramics international, 35(5), 1953-1959.
Méar, F., Yot, P., Cambon, M., & Ribes, M. (2006). The characterization of waste cathode-ray tube glass. Waste management, 26(12), 1468-1476.
Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., & Tanaka, N. (1996). Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Analytical chemistry, 68(19), 3498-3501.
Morsi, M. M., El-Sherbiny, S. I., & Mohamed, K. M. (2015). Spectroscopic investigation of amber color silicate glasses and factors affecting the amber related absorption bands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 376-383.
Mosch, D. A. (1998). U.S. Patent No. 5,718,737. Washington, DC: U.S. Patent and Trademark Office.
Müller, R., Zanotto, E. D., & Fokin, V. M. (2000). Surface crystallization of silicate glasses: nucleation sites and kinetics. Journal of non-crystalline solids, 274(1-3), 208-231.
Polley, C., Cramer, S. M., & Cruz, R. V. D. L. (1998). Potential for using waste glass in Portland cement concrete. Journal of materials in Civil Engineering, 10(4), 210-219.
Ponsot, I., Bernardo, E., Bontempi, E., Depero, L., Detsch, R., Chinnam, R. K., & Boccaccini, A. R. (2015). Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. Journal of Cleaner Production, 89, 224-230.
Ponsot, I., Bernardo, E., Bontempi, E., Depero, L., Detsch, R., Chinnam, R. K., & Boccaccini, A. R. (2015). Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. Journal of Cleaner Production, 89, 224-230.
Scheffler, M., & Colombo, P. (Eds.). (2006). Cellular ceramics: structure, manufacturing, properties and applications. John Wiley & Sons.
Shayan, A., & Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and concrete research, 34(1), 81-89.
Swift, H. R. (1947). Some experiments on crystal growth and solution in glasses. Journal of the American Ceramic Society, 30(6), 165-169.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sayyad Muhammad, Kainaat Jamil, Muhammad Jehangir, Aimal Khan, Kashif Kashmiri

This work is licensed under a Creative Commons Attribution 4.0 International License.