Materials in Accordion Construction: A Comprehensive Review of Traditional and Modern Approaches

Authors

  • Giovanni Volpatti Harmonicum, Switzerland

DOI:

https://doi.org/10.54536/jir.v3i1.3691

Keywords:

Accordion Construction Materials, Acoustic Performance, Innovative Manufacturing Technologies, Sustainable Instrument Design, Traditional vs Modern Materials

Abstract

This review comprehensively explores the materials used in accordion construction, focusing on their acoustic, practical, and environmental implications. The choice of materials for components such as the frame, bellows, reeds, valves, and external coverings profoundly influences the instrument’s sound quality, durability, and overall playability. Traditional materials like wood, leather, and steel are prized for their superior tonal qualities and aesthetic appeal but require careful maintenance and incur higher costs. In contrast, modern materials, including composites, plastics, and synthetic fabrics, offer cost, weight, and environmental resilience benefits, though they may compromise acoustic warmth and tactile feel. Emerging innovations such as nanomaterials, advanced composites, and 3D printing present new possibilities for enhancing accordion performance and sustainability. This review highlights the potential for bio-based and recycled materials to reduce environmental impact, reflecting a growing demand for eco-friendly practices in the music industry. A multidisciplinary approach involving materials science, acoustics, and craftsmanship is essential for future development. This work serves as a valuable resource for researchers, manufacturers, and musicians, guiding the evolution of accordion design to balance traditional craftsmanship with modern innovation and sustainability.

References

Asiedu, D., & Dankwa, C. A. A. (2024). Plant Design for the Production of Propylene Oxide by Isopropylbenzene 2-phenylpropane, or (1-Methylethyl) Benzene (Cumene). American Journal of Innovation in Science and Engineering, 3(3), 1–15. https://doi.org/10.54536/ajise.v3i3.3419

Bader, R., Linke, S., & Mores, R. (2019). Measurements and impulse pattern formulation (IPF) model of phase transitions in free-reed wind instruments. Journal of the Acoustical Society of America, 146(5), 3439-3449. https://doi.org/10.1121/1.5136626

Behrens, S. L., Coyle, W. L., Goodweiler, N. P., & Cottingham, J. P. (2009). Vibrational modes of accordion reeds. Journal of the Acoustical Society of America, 126(4), 2082–2090. https://doi.org/10.1121/1.3248800

Biernat, J., & Cottingham, J. P. (2013). Attack transients in free reed instruments. Journal of the Acoustical Society of America, 134(6), 4430–4436. https://doi.org/10.1121/1.4830564

Bivanti, M., Shtrepi, L., Astolfi, A., Volpatti, G., & Zampini, D. (2020). Il calcestruzzo poroso come materiale fonoassorbente: modelli di calcolo utilizzati come uno strumento di previsione per i progettisti- Pervious concrete as sound absorption material: theoretical models used as a simple predictive tools for designers. Rivista Italiana di Acustica, 44(1), 18-29. ISSN 2385-2615. https://iris.polito.it/handle/11583/2807779

Busha, M., & Cottingham, J. P. (1999). Experimental investigation of air‐driven free reeds using a laser vibrometer system. Journal of the Acoustical Society of America, 111(4), 2371–2377. https://doi.org/10.1121/1.427821

Busha, M., Cottingham, J. P., & Koopman, P. D. (2002). Laboratory measurements on free reeds from the reed organ, accordion, and khaen. Journal of the Acoustical Society of America, 106(4), 2256–2263. https://doi.org/10.1121/1.4778054

Calleri, C., Astolfi, A., Shtrepi, L., Prato, A., Schiavi, A., Zampini, D., & Volpatti, G. (2019). Characterization of the sound insulation properties of a two-layers lightweight concrete innovative façade. Applied Acoustics, 148, 107–115. https://doi.org/10.1016/j.apacoust.2018.10.003

Carini, N., & Strologo, S. (2023) Le Fisarmoniche di Camerano,Loreto,Numana,Osimo,Recanati e Sirolo

Causse, R., Misdariis, N., & Ricot, D. (1999). Studies of accordion reed vibrations—Applications in sound synthesis. Journal of the Acoustical Society of America, 106(4), 2257–2264. https://doi.org/10.1121/1.427818

Chiaia, B., Fantilli, A. P., Guerini, A., Volpatti, G., & Zampini, D. (2013). Eco-mechanical index for structural concrete. Construction and Building Materials, 47, 844–850. https://doi.org/10.1016/j.conbuildmat.2013.12.090.

Chiovarelli, V. (2021). Chiovarelli Jazz System. ISBN 979-12-200-9382-8

Cottingham, J. P. (1993). Laboratory experiments on the interaction of an air jet with a Helmholtz resonator. Journal of the Acoustical Society of America, 93(4), 2357–2363. https://doi.org/10.1121/1.407667

Cottingham, J. P. (1997). Effects of reed cell geometry on the vibration frequency and spectrum of a free reed. Journal of the Acoustical Society of America, 101(5), 2981. https://doi.org/10.1121/1.419046

Cottingham, J. P. (2000a). The acoustics of a symmetric free reed coupled to a pipe resonator. Journal of the Acoustical Society of America, 108(5), 2340–2345. https://doi.org/10.1121/1.428770

Cottingham, J. P. (2002a). From Kratzenstein to Wheatstone: Episodes in the early history of free reed acoustics. Journal of the Acoustical Society of America, 112(5), 2276–2282. https://doi.org/10.1121/1.4778047

Cottingham, J. P. (2002b). The Asian free‐reed mouth organs. Journal of the Acoustical Society of America, 112(5), 2277–2284. https://doi.org/10.1121/1.4779585

Cottingham, J. P. (2009). Blown‐closed free reeds with and without pipe resonators. Journal of the Acoustical Society of America, 126(4), 2082–2090. https://doi.org/10.1121/1.3248598

Cottingham, J. P. (2012a). Pitch bending in the diatonic harmonica. Journal of the Acoustical Society of America, 132(3), 1757–1762. https://doi.org/10.1121/1.4755348

Cottingham, J. P. (2012b). Sound production in Asian free reed mouth organs. Journal of the Acoustical Society of America, 132(4), 2625–2630. https://doi.org/10.1121/1.4708327

Cottingham, J. P. (2013). Modes of reed vibration and transient phenomena in free reed instruments. Journal of the Acoustical Society of America, 134(5), 4097–4105. https://doi.org/10.1121/1.4806225

Cottingham, J. P. (2016). Eastern and Western free reed instruments: Acoustics, history, and culture. Journal of the Acoustical Society of America, 140(6), 4712–4718. https://doi.org/10.1121/1.4969849

Cottingham, J. P. (2017a). Early history of the accordion family: Where did all the accordions come from? Journal of the Acoustical Society of America, 142(4), 2470–2477. https://doi.org/10.1121/1.5014393

Cottingham, J. P. (2017b). Reed chamber resonances in free reed instruments. Journal of the Acoustical Society of America, 142(4), 2469–2475. https://doi.org/10.1121/1.4989008

Cottingham, J. P., Colson, B. L., Wilson, S. T., & Quigley, K. W. (1995). Sound spectra from air‐driven American organ reeds. Journal of the Acoustical Society of America, 98(4), 2377–2384. https://doi.org/10.1121/1.412575

Cottingham, J. P., Lilly, C. J., & Reed, C. H. (1999). The motion of air-driven free reeds. Journal of the Acoustical Society of America, 106(4), 2063-2072. https://doi.org/10.1121/1.426334

Cottingham, J. P., Reed, C. H., & Busha, M. (1999). Variation of frequency with blowing pressure for an air-driven free reed. Journal of the Acoustical Society of America, 106(6), 3139-3147. https://doi.org/10.1121/1.425800

Coyle, W. L., Behrens, S. L., & Cottingham, J. P. (2009). Influence of accordion reed chamber geometry on reed vibration and airflow. Journal of the Acoustical Society of America, 126(4), 2151-2161. https://doi.org/10.1121/1.3248803

Dena, A., Honrado, L., Mica Lin, P., & Dotong, E. (2023). Promoting the Usage of Eco-Friendly Tertiary Packaging: A Market Research on the Perceived Behavior of Filipino Consumers Based on Sustainability Factors. American Journal of Social Development and Entrepreneurship, 2(1), 26–31. https://doi.org/10.54536/ajsde.v2i1.1223

Dirksen, B. M., & Cottingham, J. P. (2002). Transverse and torsional modes of vibration of American organ reeds. Journal of the Acoustical Society of America, 111(5), 2378-2385. https://doi.org/10.1121/1.4778706

Dunkel, M. (1999). Akkordeon, Bandonion, Concertina: Im Kontext der Harmonikainstrumente.

Fetzer, C. A., Brucker, N. L., Shackelford, E. D., & Cottingham, J. P. (1999). The acoustics of the bawu. Journal of the Acoustical Society of America, 106(6), 3509-3518. https://doi.org/10.1121/1.427822

Fetzer, C. A., & Cottingham, J. P. (1997). Acoustics of the khaen: The Laotian free‐reed mouth organ. Journal of the Acoustical Society of America, 102(5), 3032-3039. https://doi.org/10.1121/1.419324

Goetzman, E. M., & Cottingham, J. P. (2004). Period doubling in free reeds coupled to pipe resonators. Journal of the Acoustical Society of America, 116(5), 2978-2988. https://doi.org/10.1121/1.4785342

Gorino, A., Fantilli, A. P., Chiaia, B., Zampini, D., Guerini, A., & Volpatti, G. (2016). Brittle vs. Ductile behavior of concrete beams reinforced with steel rebars and fibers. Structural Concrete, 17(4), 619-628. https://iris.polito.it/handle/11583/2650232

Gorino, A., Fantilli, A. P., Chiaia, B., Zampini, D., Guerini, A., & Volpatti, G. (2018). Ductility Index and Durability in Fiber-Reinforced Concrete. Structural Concrete, 19(2), 287-298. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/51711042

Henessee, S., Wolff, D. M., & Cottingham, J. P. (2014). Study of free reed attack transients using high speed video. Journal of the Acoustical Society of America, 136(5), 2880-2889. https://doi.org/10.1121/1.4899981

Hershey, K. W., & Cottingham, J. P. (2011). Material properties of pipes and reeds from the Southeast Asian khaen. Journal of the Acoustical Society of America, 130(4), 2453-2462. https://doi.org/10.1121/1.3588338

Kaufinger, P., Wynne, L., & Cottingham, J. P. (2021). Finite element simulations of free reed instrument operation. Journal of the Acoustical Society of America, 149(6), 4081-4090. https://doi.org/10.1121/10.0008149

Kirk, T. W., & Cottingham, J. P. (2016). Modes of vibration of a sheng reed. Journal of the Acoustical Society of America, 140(5), 3781-3789. https://doi.org/10.1121/1.4969855

Llanos‐Vazquez, R., Elejalde-García, M. J., & Macho-Stadler, E. (2008). Controllable pitch‐bending effects in the accordion playing. Journal of the Acoustical Society of America, 124(6), 3795-3804. https://doi.org/10.1121/1.2934981

Llanos‐Vazquez, R., Elejalde-García, M. J., Macho-Stadler, E., & Agos‐Esparza, A. (2014). Physical and Psychoacoustic Characterization of the Different Types of Attacks on the Accordion. Acta Acustica United With Acustica, 100(6), 1182-1192. https://doi.org/10.3813/aaa.918716

Manfredi, G. (2022). Fisarmonica: Un capolavoro di ingegneria. ISBN 8894699730.

Marano, F. (2020). La fisarmonica: Evoluzione organologica e letteratura. EAN 9788890869464.

Misdariis, N., Ricot, D., & Causse, R. (2000). Modélisation physique de la vibration d’une anche d’accordéon. Revue des sciences musicales, 86(3), 150-166.

Munoz, A., Paterno, I. & Rojac, I. (2022). I precursori della fisarmonica contemporanea. Dalla civiltà musicale ottocentesca agli inizi del Novecento con uno sguardo al presente. EAN: 9788887852752

Plitnik, G. R., & Angster, J. (2009). The influence of curvature on the vibration and tone quality of pipe organ reed tongues. Journal of the Acoustical Society of America, 125(4), 2494-2505. https://doi.org/10.1121/1.4783684

Puranik, N. V., & Scavone, G. P. (2022). Physical modelling synthesis of a harmonium. Proceedings of Meetings on Acoustics, 42(1), 040005. https://doi.org/10.1121/2.0001679

Ricot, D., Causse, R., & Misdariis, N. (2005). Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed. Journal of the Acoustical Society of America, 117(1), 64-73. https://doi.org/10.1121/1.1852546

Rossing, T. D., & Cottingham, J. P. (2010). Hot topics in musical acoustics. Journal of the Acoustical Society of America, 127(5), 2832-2840. https://doi.org/10.1121/1.3384739

Shtrepi, L., Astolfi, A., Badino, E., Volpatti, G., & Zampini, D. (2020). Acoustically efficient concrete: acoustic absorption coefficient of porous concrete with different aggregate size. Forum Acusticum 2010, 3097-3100. https://hal.science/FA2020/hal-03235475

Shtrepi, L., Astolfi, A., Badino, E., Volpatti, G., & Zampini, D. (2021). More Than Just Concrete: Acoustically Efficient Porous Concrete with Different Aggregate Shape and Gradation. Applied Sciences, 11(11), 14835. https://doi.org/10.3390/app11114835

Signorini, M. (2006). La fisarmonica e il banoneon: I due strumenti tipici del tango. Musica & Ricerca, 3(2), 77-90. https://doi.org/10.1400/117168

Silva, A. R. da (2008). Numerical Studies of Aeroacoustic Aspects of Wind Instruments. https://escholarship.mcgill.ca/concern/theses/wh246v60b

St.hilaire, A. O., Wilson, T. A., & Beavers, G. S. (1971). Aerodynamic excitation of the harmonium reed. Journal of Fluid Mechanics, 49(4), 781-791. https://doi.org/10.1017/s0022112071002374

Wenzel, H., & Häffner, M. (2006). Legende Hohner Harmonika: Mundharmonika und Akkordeon in der Welt der Musik = Hohner, the living legend: Harmonicas and accordions around the world. ISBN: 978-3-937841-34-2

Wheeler, P. (2009). The adoption of the accordion and other bellow‐blown free‐reed instruments in world cultures. Journal of the Acoustical Society of America, 126(4), 2214-2221. https://doi.org/10.1121/1.3248793

Published

2025-01-07

How to Cite

Volpatti, G. (2025). Materials in Accordion Construction: A Comprehensive Review of Traditional and Modern Approaches. Journal of Innovative Research, 3(1), 1–15. https://doi.org/10.54536/jir.v3i1.3691