Artificial Intelligence in Farm Management: Integrating Smart Systems for Optimal Agricultural Practices

Authors

  • Mrutyunjay Padhiary Department of Agricultural Engineering, TSSOT, Assam University, Silchar, Assam, India
  • Kundan Kumar Department of Agricultural Engineering, TSSOT, Assam University, Silchar, Assam, India
  • Nabiul Hussain Department of Agricultural Engineering, TSSOT, Assam University, Silchar, Assam, India
  • Dipak Roy Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
  • Javed Akhtar Barbhuiya Department of Agricultural Engineering, TSSOT, Assam University, Silchar, Assam, India
  • Pankaj Roy Department of Agricultural Engineering, TSSOT, Assam University, Silchar, Assam, India

DOI:

https://doi.org/10.54536/ijsa.v3i1.3674

Keywords:

Agricultural Automation, AI-Driven Crop Monitoring, Artificial Intelligence, Precision Farming, Smart Farm Management

Abstract

The introduction of artificial intelligence (AI) in agriculture has made significant improvements in farm management possible by offering innovative ways to optimize farming operations. This review article brings together over 100 articles published in the last ten years through a systematic search of databases on specific keywords related to AI and agriculture. The research paper covers the use of AI in machinery automation, pest detection, irrigation control, and monitoring agriculture. The results obtained show a 25% increase in crop yields in precision farming techniques by AI and machine learning and a decrease in water usage by up to 30% as opposed to traditional farming practices. In addition, AI-based pest identification has reduced pesticide application by 20% and encouraged sustainable agriculture. Crop yield estimation has now improved in terms of decision-making capability since it has significantly yielded 92% accuracy levels by using AI-driven predictive models. Further, studies indicate that the maintenance cost is decreased by 18% and fuel consumption is decreased by 15% in optimized operations with AI-based farm machinery management systems. The agriculture industry can increase productivity and sustainability to a greater extent by implementing AI in the management of farms to overcome the problems arising out of the world’s ever-increasing population.

References

Abbas, A., Zhang, Z., Zheng, H., Alami, M. M., Alrefaei, A. F., Abbas, Q., Naqvi, S. A. H., Rao, M. J., Mosa, W. F. A., Abbas, Q., Hussain, A., Hassan, M. Z., & Zhou, L. (2023). Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture. Agronomy, 13(6), 1524. https://doi.org/10.3390/agronomy13061524

Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., Abidin, M. S. Z., Ayobami, A. S., Yerima, O., & Nasirahmadi, A. (2022). Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering, 4(1), Article 1. https://doi.org/10.3390/agriengineering4010006

Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences, 12(16), Article 16. https://doi.org/10.3390/app12168081

Ahmed, S., & Khan, A. (2024). The Impact of Artificial Intelligence on Sustainable Agriculture: Developing Advanced Computing Models for Environmental and Economic Benefits. Journal of Advanced Computing Systems, 4(6), Article 6.

Ali, B., Zakeri, A., Llieva, A., & Iliev, O. (2023). Reshaping of the Future Farming: From Industry 4. American Journal of Applied Scientific Research. https://doi.org/10.11648/j.ajasr.20230902.14

Ali, G., Mijwil, M. M., Bosco Apparatus Buruga, Abotaleb, M., & Adamopoulos, I. (2024). A Survey on Artificial Intelligence in Cybersecurity for Smart Agriculture: State-of-the-Art, Cyber Threats, Artificial Intelligence Applications, and Ethical Concerns. Mesopotamian Journal of Computer Science, 2024, 71–121. https://doi.org/10.58496/MJCSC/2024/007

Araújo, S. O., Peres, R. S., Ramalho, J. C., Lidon, F., & Barata, J. (2023). Machine Learning Applications in Agriculture: Current Trends, Challenges, and Future Perspectives.

Ayoub Shaikh, T., Rasool, T., & Rasheed Lone, F. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, 107119. https://doi.org/10.1016/j.compag.2022.107119

Batz, P., Will, T., Thiel, S., Ziesche, T. M., & Joachim, C. (2023). From identification to forecasting: The potential of image recognition and artificial intelligence for aphid pest monitoring. Frontiers in Plant Science, 14, 1150748. https://doi.org/10.3389/fpls.2023.1150748

Bwambale, E., Naangmenyele, Z., Iradukunda, P., Agboka, K. M., Houessou-Dossou, E. A. Y., Akansake, D. A., Bisa, M. E., Hamadou, A.-A. H., Hakizayezu, J., Onofua, O. E., & Chikabvumbwa, S. R. (2022). Towards precision irrigation management: A review of GIS, remote sensing and emerging technologies. Cogent Engineering, 9(1), 2100573. https://doi.org/10.1080/23311916.2022.2100573

Chauhan, M., & Sahoo, D. R. (2024). Towards a Greener Tomorrow: Exploring the Potential of AI, Blockchain, and IoT in Sustainable Development. Nature Environment and Pollution Technology, 23(2), 1105–1113. https://doi.org/10.46488/NEPT.2024.v23i02.044

Daily, J., & Peterson, J. (2017). Predictive Maintenance: How Big Data Analysis Can Improve Maintenance. In Supply Chain Integration Challenges in Commercial Aerospace (pp. 267–278). Springer, Cham. https://doi.org/10.1007/978-3-319-46155-7_18

Dawn, N., Ghosh, T., Ghosh, S., Saha, A., Mukherjee, P., Sarkar, S., Guha, S., & Sanyal, T. (2023). Implementation of Artificial Intelligence, Machine Learning, and Internet of Things (IoT) in revolutionizing Agriculture: A review on recent trends and challenges. International Journal of Experimental Research and Review, 30, 190–218. https://doi.org/10.52756/ijerr.2023.v30.018

Desloires, J., Ienco, D., & Botrel, A. (2023). Out-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methods. Computers and Electronics in Agriculture, 209, 107807. https://doi.org/10.1016/j.compag.2023.107807

Duckett, T., Pearson, S., Blackmore, S., Grieve, B., Chen, W.-H., Cielniak, G., Cleaversmith, J., Dai, J., Davis, S., Fox, C., From, P., Georgilas, I., Gill, R., Gould, I., Hanheide, M., Hunter, A., Iida, F., Mihalyova, L., Nefti-Meziani, S., … Yang, G.-Z. (2018). Agricultural robotics: The future of robotic agriculture (No. arXiv:1806.06762). arXiv. https://doi.org/10.48550/arXiv.1806.06762

Džermeikaitė, K., Bačėninaitė, D., & Antanaitis, R. (2023). Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals, 13(5), 780. https://doi.org/10.3390/ani13050780

Elkhouly, A. R., & Shefsha, H. A. (2023). The Role of the Libyan Agricultural Sector in the Development: An Analytical Study. International Journal of Smart Agriculture, 1(1), Article 1. https://doi.org/10.54536/ijsa.v1i1.1740

Elouataoui, W. (2023). AI-Driven Frameworks for Enhancing Data Quality in Big Data Ecosystems: Error Detection, Correction, and Metadata Integration.

Elshaikh, A., Elsheikh, E., & Mabrouki, J. (2024). Applications of Artificial Intelligence in Precision Irrigation. Journal of Environmental & Earth Sciences, 6(2), Article 2. https://doi.org/10.30564/jees.v6i2.6679

Elshaikh, A., Elsiddig Elsheikh, & Jamal Mabrouki. (2024a). Applications of Artificial Intelligence in Precision Irrigation. Journal of Environmental & Earth Sciences, 6(2), 176–186. https://doi.org/10.30564/jees.v6i2.6679

Elshaikh, A., Elsiddig Elsheikh, & Jamal Mabrouki. (2024b). Applications of Artificial Intelligence in Precision Irrigation. Journal of Environmental & Earth Sciences, 6(2), 176–186. https://doi.org/10.30564/jees.v6i2.6679

Espinel, R., Herrera-Franco, G., Rivadeneira García, J. L., & Escandón-Panchana, P. (2024). Artificial Intelligence in Agricultural Mapping: A Review. Agriculture, 14(7), 1071. https://doi.org/10.3390/agriculture14071071

Fadiji, T., Bokaba, T., Fawole, O. A., & Twinomurinzi, H. (2023). Artificial intelligence in postharvest agriculture: Mapping a research agenda. Frontiers in Sustainable Food Systems, 7, 1226583. https://doi.org/10.3389/fsufs.2023.1226583

Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024a). Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. Journal of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/jsan13040039

Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024b). Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. Journal of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/jsan13040039

Gao, X., & Feng, H. (2023). AI-Driven Productivity Gains: Artificial Intelligence and Firm Productivity. Sustainability, 15(11), 8934. https://doi.org/10.3390/su15118934

Jacquet, F., Jeuffroy, M.-H., Jouan, J., Le Cadre, E., Litrico, I., Malausa, T., Reboud, X., & Huyghe, C. (2022). Pesticide-free agriculture as a new paradigm for research. Agronomy for Sustainable Development, 42(1), 8. https://doi.org/10.1007/s13593-021-00742-8

Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15–30. https://doi.org/10.1016/j.aac.2022.10.001

Jebbor, I., Benmamoun, Z., & Hachmi, H. (2024). Revolutionizing cleaner production: The role of artificial intelligence in enhancing sustainability across industries. Journal of Infrastructure, Policy and Development, 8(10), 7455. https://doi.org/10.24294/jipd.v8i10.7455

Kamyab, H., Khademi, T., Chelliapan, S., SaberiKamarposhti, M., Rezania, S., Yusuf, M., Farajnezhad, M., Abbas, M., Hun Jeon, B., & Ahn, Y. (2023). The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource management. Results in Engineering, 20, 101566. https://doi.org/10.1016/j.rineng.2023.101566

Kariyanna, B., & Sowjanya, M. (2024). Unravelling the use of artificial intelligence in management of insect pests. Smart Agricultural Technology, 8, 100517. https://doi.org/10.1016/j.atech.2024.100517

Khatri, P., Kumar, P., Shakya, K. S., Kirlas, M. C., & Tiwari, K. K. (2023). Understanding the intertwined nature of rising multiple risks in modern agriculture and food system. Environment, Development and Sustainability, 26(9), 24107–24150. https://doi.org/10.1007/s10668-023-03638-7

Kushwaha, D., Sahoo, P. K., Pradhan, N., Makwana, Y., & Mani, I. (2022). Robotics application in agriculture.

Lodhi, S. K., Gill, A. Y., & Hussain, I. (2024). AI-Powered Innovations in Contemporary Manufacturing Procedures: An Extensive Analysis. International Journal of Multidisciplinary Sciences and Arts, 3(4), 15–25. https://doi.org/10.47709/ijmdsa.v3i4.4616

Lowe, M., Qin, R., & Mao, X. (2022). A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water, 14(9), 1384. https://doi.org/10.3390/w14091384

Mendeja, K. L. D., Dulce, N. R., Martinez, V. U., Tuazon, C. N., Gaspado, J. M., & Magnaye, N. A. N. A. (2023). A Development using the Rapid Application Model of peTrace: Peter’s Poultry Supply Sales and Monitoring Management System. International Journal of Metaverse, 1(1), Article 1. https://doi.org/10.54536/ijm.v1i1.1499

Mhlanga, D. (2021). Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies? Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788

Mirás-Avalos, J. M., & Araujo, E. S. (2021). Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water, 13(6), Article 6. https://doi.org/10.3390/w13060746

Mohammed, N. (2024). Assessment of the Use of Information and Communication Technologies (ICT) in Agricultural Extension Service Delivery among Farmers in Yobe State, Nigeria. International Journal of Smart Agriculture, 2(1), Article 1. https://doi.org/10.54536/ijsa.v2i1.2877

Mohd Faishal, Saju Mathew, Kelengol Neikha, Khriemenuo Pusa, & Tonoli Zhimomi. (2023). The future of work: AI, automation, and the changing dynamics of developed economies. World Journal of Advanced Research and Reviews, 18(3), 620–629. https://doi.org/10.30574/wjarr.2023.18.3.1086

Morales, A., & Villalobos, F. J. (2023). Using machine learning for crop yield prediction in the past or the future. Frontiers in Plant Science, 14, 1128388. https://doi.org/10.3389/fpls.2023.1128388

Nwankwo Constance Obiuto, Igberaese Clinton Festus-Ikhuoria, Oladiran Kayode Olajiga, & Riliwan Adekola Adebayo. (2024). REVIEWING THE ROLE OF AI IN DRONE TECHNOLOGY AND APPLICATIONS. Computer Science & IT Research Journal, 5(4), 741–756. https://doi.org/10.51594/csitrj.v5i4.1019

Ouhami, M., Hafiane, A., Es-Saady, Y., El Hajji, M., & Canals, R. (2021). Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sensing, 13(13), Article 13.

Padhiary, M. (2024a). Harmony under the Sun: Integrating Aquaponics with Solar-Powered Fish Farming. In Introduction to Renewable Energy Storage and Conversion for Sustainable Development (Vol. 1, pp. 31–58). AkiNik Publications. https://doi.org/10.22271/ed.book.2882

Padhiary, M. (2024b). Status of Farm Automation, Advances, Trends, and Scope in India. International Journal of Science and Research (IJSR), 13(7), 737–745. https://doi.org/10.21275/SR24713184513

Padhiary, M. (2024c). The Convergence of Deep Learning, IoT, Sensors, and Farm Machinery in Agriculture: In S. G. Thandekkattu & N. R. Vajjhala (Eds.), Advances in Business Information Systems and Analytics (pp. 109–142). IGI Global. https://doi.org/10.4018/979-8-3693-5498-8.ch005

Padhiary, M., Barbhuiya, J. A., Roy, D., & Roy, P. (2024). 3D Printing Applications in Smart Farming and Food Processing. Smart Agricultural Technology, 9, 100553. https://doi.org/10.1016/j.atech.2024.100553

Padhiary, M., Kumar, R., & Sethi, L. N. (2024). Navigating the Future of Agriculture: A Comprehensive Review of Automatic All-Terrain Vehicles in Precision Farming. Journal of The Institution of Engineers (India): Series A, 105, 767–782. https://doi.org/10.1007/s40030-024-00816-2

Padhiary, M., Kyndiah, A. K., Kumar, R., & Saha, D. (2024). Exploration of electrode materials for in-situ soil fertilizer concentration measurement by electrochemical method. International Journal of Advanced Biochemistry Research, 8(4), 539–544. https://doi.org/10.33545/26174693.2024.v8.i4g.1011

Padhiary, M., Rani, N., Saha, D., Barbhuiya, J. A., & Sethi, L. N. (2023). Efficient Precision Agriculture with Python-based Raspberry Pi Image Processing for Real-Time Plant Target Identification. International Journal of Research and Analytical Review, 10(3), 539–545. http://doi.one/10.1729/Journal.35531

Padhiary, M., & Roy, P. (2024). Advancements in Precision Agriculture: Exploring the Role of 3D Printing in Designing All-Terrain Vehicles for Farming Applications. International Journal of Science and Research, 13(5), 861–868.

Padhiary, M., Saha, D., Kumar, R., Sethi, L. N., & Kumar, A. (2024). Enhancing Precision Agriculture: A Comprehensive Review of Machine Learning and AI Vision Applications in All-Terrain Vehicle for Farm Automation. Smart Agricultural Technology, 8, 100483. https://doi.org/10.1016/j.atech.2024.100483

Padhiary, M., Sethi, L. N., & Kumar, A. (2024). Enhancing Hill Farming Efficiency Using Unmanned Agricultural Vehicles: A Comprehensive Review. Transactions of the Indian National Academy of Engineering, 9(2), 253–268. https://doi.org/10.1007/s41403-024-00458-7

Padhiary, M., Tikute, S. V., Saha, D., Barbhuiya, J. A., & Sethi, L. N. (2024). Development of an IOT-Based Semi-Autonomous Vehicle Sprayer. Agricultural Research, 13(3). https://doi.org/10.1007/s40003-024-00760-4

Rane, N. L., & Choudhary, S. P. (2023). Remote sensing (RS), UAV/drones, and machine learning (ML) as powerful techniques for precision agriculture: Effective applications in agriculture. Open Access, 5(4).

Saha, D., Padhiary, M., Barbhuiya, J. A., Chakrabarty, T., & Sethi, L. N. (2023). Development of an IOT based Solenoid Controlled Pressure Regulation System for Precision Sprayer. International Journal for Research in Applied Science and Engineering Technology, 11(7), 2210–2216. https://doi.org/10.22214/ijraset.2023.55103

Sakib, N., & Wuest, T. (2018). Challenges and Opportunities of Condition-based Predictive Maintenance: A Review. Procedia CIRP, 78, 267–272. https://doi.org/10.1016/j.procir.2018.08.318

Senoo, E. E. K., Anggraini, L., Kumi, J. A., Karolina, L. B., Akansah, E., Sulyman, H. A., Mendonça, I., & Aritsugi, M. (2024). IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities. Electronics, 13(10), 1894. https://doi.org/10.3390/electronics13101894

Songol, M., Awuor, F., & Maake, B. (2021). Adoption of artificial intelligence in agriculture in the developing nations: A review. Journal of Language, Technology & Entrepreneurship in Africa, 12(2), 208–229.

Stanford University, USA, Mittal, U., Panchal, D., & Dapertment of Mechanical Engineering, National Institute of Technology Kurukshetra, India. (2023). AI-based evaluation system for supply chain vulnerabilities and resilience amidst external shocks: An empirical approach. Reports in Mechanical Engineering, 4(1), 276–289. https://doi.org/10.31181/rme040122112023m

Stenberg, J. A. (2017). A Conceptual Framework for Integrated Pest Management. Trends in Plant Science, 22(9), 759–769. https://doi.org/10.1016/j.tplants.2017.06.010

Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5, 278–291. https://doi.org/10.1016/j.aiia.2021.11.004

Supriya, M., Tyagi, A. K., Tiwari, S., & Richa. (2024). Sensor-Based Intelligent Recommender Systems for Agricultural Activities: In A. Naim (Ed.), Advances in Computational Intelligence and Robotics (pp. 197–235). IGI Global. https://doi.org/10.4018/979-8-3693-5266-3.ch008

Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020a). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://doi.org/10.1016/j.aiia.2020.04.002

Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020b). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73.

Taneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., Barba, F. J., Castagnini, J. M., Leksawasdi, N., & Phimolsiripol, Y. (2023). Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy, 13(5), 1397. https://doi.org/10.3390/agronomy13051397

Tedeschi, L. O., Greenwood, P. L., & Halachmi, I. (2021). Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. Journal of Animal Science, 99(2). https://doi.org/10.1093/jas/skab038

Tien, J. M. (2017). Internet of Things, Real-Time Decision Making, and Artificial Intelligence. Annals of Data Science, 4(2), 149–178. https://doi.org/10.1007/s40745-017-0112-5

Varghese, A., Ande, J. R. P. K., Mahadasa, R., Gutlapalli, S. S., & Surarapu, P. (2023). Investigation of Fault Diagnosis and Prognostics Techniques for Predictive Maintenance in Industrial Machinery. Engineering International, 11(1), 9–26. https://doi.org/10.18034/ei.v11i1.693

Wan, J., Li, X., Dai, H. N., Kusiak, A., Martinez-Garcia, M., & Li, D. (2021). Artificial-Intelligence-Driven Customized Manufacturing Factory: Key Technologies, Applications, and Challenges. Proceedings of the IEEE, 109(4), 377–398. https://doi.org/10.1109/JPROC.2020.3034808

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

Downloads

Published

2025-02-08

How to Cite

Padhiary, M., Kumar, K., Hussain, N., Roy, D., Barbhuiya, J. A., & Roy, P. (2025). Artificial Intelligence in Farm Management: Integrating Smart Systems for Optimal Agricultural Practices. International Journal of Smart Agriculture, 3(1), 1–11. https://doi.org/10.54536/ijsa.v3i1.3674