Fecal Sludge Recycling to Useful Products: Environmental Concerns, Viability and Potential

Authors

  • Abdulhalim Musa Abubakar Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University (MAU), P.M.B 2076, Yola, Adamawa State, Nigeria
  • Ahmed Abdo Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
  • Moges Admasie Mengstie Department of Industrial Chemistry, College of Science, Bahir Dar University, Bahir Dar, Ethiopia
  • Zannatul Nayem Department of Zoology, University of Chittagong, Chattogram 4331, Bangladesh
  • Minza Igunda Selele Department of Environmental Science and Technology, School of Engineering and Environmental Studies, Ardhi University, P.O. Box 35176 Dar es Salaam-Tanzania
  • Muhammad Abbagoni Abubakar Department of Chemical Engineering, Faculty of Engineering, University of Maiduguri (UNIMAID), P.M.B 1069, Maiduguri, Borno State, Nigeria
  • Eni Siti Rohaeni Research Center for Animal Husbandry - Research Organization for Agriculture and Food. The National Research and Innovation Agency. Cibinong Science Center. Jl. Raya Jakarta-Bogor Km. 46 Cibinong District, Bogor Regency. West Java Province, Indonesia

DOI:

https://doi.org/10.54536/ari.v1i1.1526

Keywords:

Human Excreta, Urine, Biogas, Biofertilizer, Night Soil, Fecal Sludge, Waste Management

Abstract

Biofertilizer, biogas and the chemical substances in those two, which are generated as a result of several treatment methods fecal sludge (FS) are usually subjected to, can be recovered for diverse applications. The treatment methods are classified into traditional and innovative methods. FS sludge impacts the environment negatively and one of the most adopted methods for its treatment from toilets where they originate, are composting and anaerobic digestion to recover biogas and organic fertilizer. FS potential for biogas production has been critically examined here using literature sources. It is discovered that FS is not largely favored as a means of recovering bioenergy in most parts of the world due to hygiene concerns, even though it is one of the most abundant organic materials for bioenergy recovery through anaerobic digestion. This work hence studied the factors hindering FS recycling and reuse, which it convincingly addresses. The work also demonstrates ways FS can be safely collected and digested to useful products and make a case for future investment in the sector by relevant bodies due to its feasibility, profitability and environmental-friendliness. Implementation of a system that recovers FS from latrines of households and public places and converts them to useful products are therefore recommended.

References

Adjama, I., Derkyi, N. S. A., Uba, F., Akolgo, G. A., & Opuko, R. (2022). Anaerobic Co-Digestion of Human Feces with Rice Straw for Biogas Production: A Case Study in Sunyani. Modelling and Simulation in Engineering, 2022. https://doi.org/10.1155/2022/2608045

Afifah, U., & Priadi, C. R. (2017). Biogas potential from anaerobic co-digestion of fecal sludge with food waste and garden waste. AIP Conference Proceedings 1826, 020032 (2017), 1826(020032), 1–8. https://doi.org/10.1063/1.4979248

Agani, I. C., Suanon, F., Dimon, B., Ifon, E. B., Yovo, F., Wotto, V. D., Abass, O. K., & Kumwimba, M. N. (2016). Enhancement of fecal sludge conversion into biogas using iron powder during anaerobic digestion process. American Journal of Environmental Protection, 5(6), 179–186. https://doi.org/10.11648/j.ajep.20160506.15

Agarwal, K. C., Vinayak, V. K., Ganguly, N. K., Kumar, M., & Chhuttani, P. N. (1978). Ecological effects of production of biogas from human excreta on the enteric pathogens. Indian Journal of Medical Research, 67, 737–743.

Ajieh, M. U., Isagba, E. S., Ihoeghian, N., Edosa, V. I. O., Amenaghawon, A., Oshoma, C. E., Erhunmwunse, N., Obuekwe, I. S., Tongo, I., Emokaro, C., & Ezemonye, L. I. N. (2021). Assessment of sociocultural acceptability of biogas from faecal waste as an alternative energy source in selected areas of Benin City, Edo state, Nigeria. Environment, Development and Sustainability, 1–18. https://doi.org/10.1007/s10668-020-01205-y

Alam, K. Z., Ahmed, H. I., & Hossain, M. R. T. (2021). Potentiality evaluation of human excreta and biodegradable municipal solid waste to generate electricity through biogas for electric vehicle charging stations. 2021 6th International Conference on Development in Renewable Energy Technology (ICDRET), 1–6. https://doi.org/10.1109/ICDRET54330.2021.9752678

Ali, M. S. (2019). Human excreta of refugee camps: The source of biogas. Society & Change, XIII(3), 49–54.

Aljbour, S. H., El-Hasan, T., Al-Hamaiedeh, H., Hayek, B., & Abu-Samhadaneh, K. (2021). Anaerobic co-digestion of domestic sewage sludge and food waste for biogas production: A decentralized integrated management of sludge in Jordan. Journal of Chemical Technology and Metallurgy, 56(5), 1030–1038. https://www.researchgate.net/publication/353495952

Andriani, D., Wresta, A., Saepudin, A., & Prawara, B. (2015). A review of recycling of human excreta to energy through biogas generation: Indonesia case. 2nd International Conference on Sustainable Energy Engineering and Application, ICSEEA 2014, 68, 219–225. https://doi.org/10.1016/j.egypro.2015.03.250

Andriessen, N., Appiah-Effa, E., Browne, S. J. I., al Jahjah, R., Kabika, J., Kinobe, J. R., Korir, N., Nishimwe, P., Niwagaba, C. B., Pradeep, R., Prasad, P., Tembo, J. M., William, A., Ambuehl, B., & Strande, L. (2023). Quantities and qualities of fecal sludge: Experiences from field implementation with a Volaser in countries during a pandemic. Frontiers in Water, 1–14. https://doi.org/10.3389/frwa.2023.1130081

Anukam, A. I., & Nyamukamba, P. (2022). The Chemistry of Human Excreta Relevant to Biogas Production: A Review. Anaerobic Biodigesters for Human Waste Treatment, 29-38. https://doi.org/10.1007/978-981-19-4921-0_2

Appiah-effah, E., Biritwum, K., & Ofosu, E. (2015). Heavy metals and microbial loads in raw fecal sludge from low income areas of Ashanti Region of Ghana. Water Practice & Technology, 10(1), 124–132. https://doi.org/10.2166/wpt.2015.014

Astuti, J. T., Nilawati, D., Sintawardani, N., & Ushijima, K. (2016). Human excreta discharging system and potential nutrient recovery if ecological sanitation concept is implemented in slum area of Kiaracondong, Bandung. Teknologi Indonesia, 39(2), 50–59.

Bao, P. N. (2006). Potential and limitations of existing technical alternatives on human excreta and domestic wastewater management in Haiphong City, Vietnam (T. Koottatep, N. T. K. Oanh, & T. Aramaki (eds.)). School of Environment, Resources and Development, Thailand.

Barani, V., Hegarty-Craver, M., Rosario, P., Madhavan, P., Perumal, P., Sasidaran, S., Basil, M., Raj, A., Berg, A. B., Stowell, A., Heaton, C., & Grego, S. (2018). Characterization of fecal sludge as biomass feedstock in the southern Indian state of Tamil Nadu. Gates Open Research, 2(52), 1–10. https://doi.org/10.12688/gatesopenres.12870.1

Bhakta, R. (2022). Optimization of biohydrogen production from microalgae-fecal sludge co-fermentation (M. Khalekuzzaman (ed.)) [Department of Civil Engineering Khulna University of Engineering & Technology]. https://doi.org/10.13140/RG.2.2.11742.51528

Bjørkøy, A., & Fiksdal, L. (2009). Characterization of biofouling on hollow fiber membranes using confocal laser scanning microcscopy and image analysis. Desalination, 245(1-3), 474-484. https://doi.org/10.1016/j.desal.0000.00.000

Blackett, I. C., Hawkins, P., & Heymans, C. (2014). The missing link in sanitation service delivery: a review of fecal sludge management in 12 cities. https://doi.org/10.13140/RG.2.1.4072.7205

Bourgault, C., Lessard, P., Remington, C., & Dorea, C. C. (2019). Experimental determination of moisture sorption isotherm of fecal sludge. Water, 11(303), 1–7. https://doi.org/10.3390/w11020303

Bousek, J., Skodak, M., Bäuerl, M., Ecker, G., Spit, J., Hayes, A., & Fuchs, W. (2018). Development of a field laboratory for monitoring of fecal-sludge treatment plants. Water, 10(1153), 1–17. https://doi.org/10.3390/w10091153

Burka, M. S., Basamykina, A. N., & Kharlamova, M. D. (2021, March). Technological features of biogas production while anaerobic co-digestion of faecal sludge, sewage sludge and livestock. In IOP Conference Series: Earth and Environmental Science (Vol. 666, No. 4, p. 042052). IOP Publishing. https://doi.org/10.1088/1755-1315/666/4/042052

Buxton, D., & Reed, B. (2010). Disposal of latrine waste: Is biogas the answer? A review of literature. EWB-UK National Research Conference: From Small Steps to Giant Leaps...Putting Research into Practice. fr.ircwash.org

Claribelle, N. N., Chinedu, N., Nnaemeka, O. P., & Toochukwu, E. S. (2020). Production of electricity from human waste as a strategy for curbing electricity generation problem in Nigeria. International Journal of Sustainable and Green Energy, 9(4), 85–96. https://doi.org/10.11648/j.ijrse.20200904.12

Colón, J., Forbis-Stokes, A. A., & Deshusses, M. A. (2015). Anaerobic digestion of undiluted simulant human excreta for sanitation and energy recovery in less-developed countries. Energy for Sustainable Development, 29, 57–64. https://doi.org/10.1016/j.esd.2015.09.005

Coulibaly, L., Ouattara, J.-M. P., & Agathos, S. (2012). Biogas potential of the agro-pastoral residues and human excrement in the Comoé River Catchment (Côte D’Ivoire). Journal of Sustainable Development in Africa, 14(4), 18–31.

Cui, H., Wang, J., Feng, K., & Xing, D. (2022). Digestate of fecal sludge enhances the tetracycline removal in soil microbial fuel cells. Water, 14(2752), 1–12. https://doi.org/10.3390/w14172752

Dahunsi, S. O., & Oranusi, U. S. (2013). Co-digestion of food waste and human excreta for biogas production. British Biotechnology Journal, 3(4), 485–499. www.sciencedomain.org

Deka, A., Kataki, R., & Simha, P. (2022). Recycling source-separated human faeces. In Novel Approaches Towards Wastewater Treatment and Resource Recovery Technologies, Elsevier 341-352. https://doi.org/10.1016/B978-0-323-90627-2.00023-X

Dhungana, S., Adhikari, B., Shrestha, D., & Shrestha, B. P. (2019). Enhanced biogas production from fecal sludge by iron metal supplementation: Iron enriched fertiliser as a byproduct. The 12th TSAE International Conference-IOP Conference Series: Earth and Environmental Science, 301(012028), 1–6. https://doi.org/10.1088/1755-1315/301/1/012028

Dima, F. A. F. J., Zhou, X., & Zhu, L. (2023). Plant seed–based bio‑coagulant development and application for fecal sludge treatment and biogas production improvement. Biomass Conversion and Biorefinery, 1–15. https://doi.org/10.1007/s13399-023-03855-0

Duojiao, Z., Na, D., Cong, L., Yilin, Z., Qiuzi, X., & Zhidan, L. (2017). Empirical analysis of mass flow and operation performance of a full-scale biogas plant for human feces treatment. International Journal of Agricultural and Biological Engineering, 10(2), 233–241. https://www.ijabe.org

Edith, K.-K. N., Théophile, G., Félix, K. K., Yves, B. K., Martin, K. K., Francis, K. Y., & Kanlan, T. (2013). Improving anaerobic biodigestion of manioc wastewater with human urine as co-substrate. International Journal of Innovation and Applied Studies, 2(3), 335–343. http://www.issr-journals.org/ijias/

Emetere, M. E., & Adesina, T. A. (2019). Short review on the prospects of human biogas utilization in Nigeria. IOP Conference Series: Earth and Environmental Science 331: International Conference on Energy and Sustainable Environment, 331(012051), 1–7. https://doi.org/10.1088/1755-1315/331/1/012051

Emetere, M. E., Agubo, O., & Chikwendu, L. (2021). Erratic electric power challenges in Africa and the way forward via the adoption of human biogas resources. Energy Exploration & Exploitation, 39(4), 1349–1377. https://doi.org/10.1177/01445987211003678

Emetere, M. E., Chikwendu, L., Abodunrin, T. J., Jen, T. C., & Afolalu, S. A. (2022). A sustainable and affordable production design of cleaner biogas from human excreta using eggshell. Biomass Conversion and Biorefinery, 12–22. https://doi.org/10.1007/s13399-022-02500-6

Emetere, M. E., Chikwendu, L., & Afolalu, S. A. (2022). Improved biogas production from human excreta using chicken feather powder: A sustainable option to eradicating poverty. Global Challenges, 6(2100117), 1–11. https://doi.org/10.1002/gch2.202100117

Ersson, O., & King, K. (2019). The Kailash Ecovillage project converting human excreta into organic foodstuffs and sanitized compost using new international building codes for compost toilet and urine diversion systems. Blue-Green Systems, 1(1), 33–54. https://doi.org/10.2166/bgs.2019.192

Forbis-Stokes, A. A., O’Meara, P. F., Mugo, W., Simiyu, G. M., & Deshusses, M. A. (2016). On-site fecal sludge treatment with the anaerobic digestion pasteurization latrine. Environmental Engineering Science, 33(11), 898–906. https://doi.org/10.1089/ees.2016.0148

Gashaw, A. (2014). Anaerobic co-digestion of biodegradable municipal solid waste with human excreta for biogas production: A review. American Journal of Applied Chemistry, 2(4), 55–62. https://doi.org/10.11648/j.ajac.20140204.12

Gebrezgabher, S., & Natarajan, H. (2017). Case: Biogas from fecal sludge at community scale (Sulabh, India) (J. Heeb, L. Barreto-Dillon, J. Buijs, J. Nikiema, & K. Doshi (eds.)). Taylor & Francis.

Gebrezgabher, S., Odero, J., & Karanja, N. (2017). Case: Biogas from fecal sludge at Kibera communities at Nairobi (Umande Trust, Kenya) (J. Heeb, J. Buijs, J. Nikiema, & K. Doshi (eds.). Taylor & Francis.

Gohil, S. N., Shilpkar, P. G., Shah, M. C., Shah, A. J., & Acharya, P. B. (2018). Methane from human excreta: Comparative assessment of batch and continuous biomethanation process. Journal of Pure and Applied Microbiology, 12(4), 2143–2148. https://doi.org/10.22207/JPAM.12.4.52

Hadiyarto, A., Utama, A. D., & Oktaviani, A. D. (2020). Co-digestion of human excreta and corncob to biogas production. Proceedings of 2nd International Conference on Chemical Process and Product Engineering (ICCPPE): AIP Conference Proceedings 2197, 030011 (2020), 1–6. https://doi.org/10.1063/1.5140903

Hafford, L. M., Ward, B. J., Weimer, A. W., & Linden, K. (2019). Fecal sludge as a fuel: Characterization, cofire limits, and evaluation of quality improvement measures. Water Science and Technology, 1–12. https://doi.org/10.2166/wst.2019.005

Harder, R., Wielemaker, R., Larsen, T. A., Zeeman, G., & Öberg, G. (2019). Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Critical Reviews in Environmental Science and Technology, 49(8), 695–743. https://doi.org/10.1080/10643389.2018.1558889

Harper, J., Bielefeldt, A., Javernick-Will, A., Veasna, T., & Nicoletti, C. (2018). Intentions toward fecal sludge management in rural developing communities. In B. Franz (Ed.), 16th Engineering Project Organization Conference (EPOC) [Brijuni, Croatia June 25-27, 2018]: Working Paper Proceedings (pp. 863–896). https://www.researchgate.net/publication/326607793

Harper, J., Bielefeldt, A. R., Javernick-Will, A., Veasna, T., & Nicoletti, C. (2020). Context and intentions: Practical associations for fecal sludge management in rural low-income Cambodia. Journal of Water, Sanitation and Hygiene for Development, 10(2), 191–201. https://doi.org/10.2166/washdev.2020.103

Haruna, I. U., Zubairu, B., & Yakubu, B. (2016). Theoretical evaluation of the potential of human waste for household electrification. Greener Journal of Science, Engineering and Technological Research, 6(3), 78–81. https://doi.org/10.15580/GJSETR.2016.3.120816210

Hien, P. T. T., Preston, T. R., Lam, V., & Khang, D. N. (2014). Vegetable waste supplemented with human or animal excreta as substrate for biogas production. Livestock Research for Rural Development, 26(176). http://www.lrrd.org/lrrd26/10/hien26176.html

Holmer, R. J., & Itchon, G. S. (2008). Is human excreta an answer to the food & fertiliser crisis. Vegetables: Ecological Sanitation (Ecosan) Project, 35(4), 31–33.

Hossain, M. D., Ninsawat, S., Sharma, S., Koottatep, T., & Sarathai, Y. (2015). GIS oriented service optimization tool for fecal sludge collection. FOSS4G Seoul, South Korea [September 14th-19th, 2015], 1–12. https://www.researchgate.net/publication/303306432

IDRC-TS8e. (1978). Compost, fertiliser, and biogas production from human and farm wastes in the People’s Republic of China (M. G. McGarry & J. Stainforth (eds.)). International Development Research Centre (IDRC).

Inah, S. A., Andenum, S. K.-R., Asor, L. J., Okon, A. K. J., Egbonyi, D. E., & Osuchukwu, N. C. (2023). Knowledge, perceptions and attitude towards open defecation and its health implications among residents in Ussa Local Government Area, Taraba state, Nigeria. Global Sustainability Research, 2(1), 10–21. https://doi.org/10.56556/gssr.v2i1.436

Issah, A.-A., & Salifu, T. (2012). Nutrient value in the effluent of human excreta and fruit waste in two fixed dome biogas plants. Journal of Agricultural and Biological Science, 7(10), 798–802. http://www.arpnjournals.com/jabs/rese.

Jahan, N., Kabir, S. Bin, Hasan, M., & Khalekuzzaman, M. (2022). A low-cost approach with enhanced biohythane production from wastewater-grown microalgae and fecal sludge through two-stage anaerobic digestion. SSRN-Elsevier, 1–24. https://ssrn.com/abstract=4202358

Jewitt, S. (2011). Poo gurus? Researching the threats and opportunities presented by human waste. Applied Geography, 31(2), 761–769. https://doi.org/10.1016/j.apgeog.2010.08.003

Jha, P. K. (2005). Recycling and reuse of human excreta from public toilets through biogas generation to improve sanitation, community health and environment Sulabh International Academy of Environmental Sanitation, Mahavir Enclave, 1–6.https://un-csam.org/node/1177

Jha, S. N. (1984). Biogas from human excreta. https://cir.nii.ac.jp/crid/1571417124914438144

Joveniaux, A., Legrand, M., Esculier, F., & De Gouvello, B. (2022). Towards the development of source separation and valorization of human excreta? Emerging dynamics and prospects in France. Frontiers in Environmental Science, 1–22. https://doi.org/10.3389/fenvs.2022.976624

Junggoth, R., & Kuster, A. C. (2020). Performance of solar greenhouse sand drying beds in fecal sludge heating and drying and inactivation of Opisthorchis Viverrini eggs during winter in Thailand. Suranaree Journal of Science and Technology, 28(5), 1–9. https://www.researchgate.net/publication/361784875

Kar, S., Ahmed, T., Ibn Monabbar, A. F. A., Mondal, N. A., & Hasan, M. A. (2022). Air purification unit for fecal sludge emptying to protect the operators and the neighborhood from toxic gas exposure-A conceptual design approach, Practical Action Consulting, 1–1.

Kelova, M., & Jenssen, P. D. (2018). The transformation of human excreta into new resources and risks associated with their utilization-Dry toilets technology review within the framework of circular economy. In Sustainability and the circular model for renewable resources Norwegian University of Life Sciences: NMBU. 20.

Kooij, S. Van Der, Vliet, B. J. M. Van, Stomph, T. J., Sutton, N. B., Anten, N. P. R., & Hoffland, E. (2020). Phosphorus recovered from human excreta: A socio-ecological-technical approach to phosphorus recycling. Resources, Conservation & Recycling, 157(104744), 1–11. https://doi.org/10.1016/j.resconrec.2020.104744

Krou, N. M. B., Baba, G., & Akpaki, O. (2021). Estimation of the amount of electrical energy available from the biogas produced in the City of Sokodé. 2nd German-West African Conference on Sustainable, Renewable Energy Systems SusRES–Kara, 1(13), 77–82. https://doi.org/10.52825/thwildauensp.v1i.13

Kumar, S. (2013). Bio-toilets for Indian railways. Current Science, 104(3), 283–283.

Lam, S., Nguyen-Viet, H., Tuyet-Hanh, T. T., Nguyen-Mai, H., & Harper, S. (2015). Evidence for public health risks of wastewater and excreta management practices in Southeast Asia: A scoping review. International Journal of Environmental Research and Public Health, 12, 12863–12885. https://doi.org/10.3390/ijerph121012863

Lane, J. (2008). Beyond construction use by all (J. Wicken, J. Verhagen, C. Sijbesma, C. Da Silva, & P. Ryan (eds.). IRC International Water and Sanitation Centre and WaterAid.

Likoko, E. (2013). Ecological management of human excreta in an urban slum: A case study of Mukuru in Kenya (G. Gallardo & L. Rudebeck (eds.)). Department of Earth Sciences, Geotryckeriet, Uppsala University.

Linares-Lujan, G. A., Echeverria-Perez, C., & Cespedes-Aguilar, T. (2017). Energy potential of the rural area of “La Libertad” department (Peru) produced by biogas obtained from human waste. Tecnología En Marcha, 30(4), 108–117. https://doi.org/10.18845/tm.v30i4.3415

Lindberg, E., & Rost, A. (2018). Treatment of faecal sludge from pit latrines and septic tanks using line and urea. Lulea University of Technology.

Loiko, N., Kanunnikov, O., Ksenia, T., Pankratov, T., Belova, S., Botchkova, E., Vishnyakova, A., & Litti, Y. (2023). Biocides with controlled degradation for environmentally friendly and cost-Effective fecal sludge management. Biology, 12(45), 1–21. https://doi.org/10.3390/biology12010045

Madikizela, P., Laubsher, R., Tandlich, R., & Ngqwala, N. P. (2017). Optimizing biogas recovery from pit latrine faecal sludge. uest.ntua.gr

Makinde, O. O. (2023). A physical model for the sustainable transformation of human waste into biogas in housing. Environmental Protection Research, 3(1), 92–109. https://doi.org/10.37256/epr.3120231927

Malimi, K., Li, Z., Cheng, S., Bishogea, O. K., & Velempini, K. (2023). Study of effects of biochar particle sizes on anaerobic co digestion of fecal sludge and food waste. Research Square, 1–13. https://doi.org/10.21203/rs.3.rs-2665164/v1

Maqbool, N., Shahid, M. A., & Khan, S. J. (2022). Situational assessment for fecal sludge management in major cities of Pakistan. Environmental Science and Pollution Research, 1–12. https://doi.org/10.21203/rs.3.rs-1583178/v1

Mara, D., & Cairncross, S. (1989). Guidelines for the safe use of wastewater and excreta in agriculture and aquaculture: Measures for public health protection Prepared by (B. Abisudjak, H. Romero-Alvarez, A. Arar, S. Attallah, C. Bartone, E. Bauer, A. Biswas, U. Blumenthal, A. Caceres, S. Cairncross, P. Guo, I. Hespanhol, J. Kalbermatten, D. Mara, W. Pescod, S. Peter, A. Prost, A. Redekopp, R. Schertenlieb, … M. Strauss (eds.)). World Health Organization.

Maurya, N. S. (2012). Is human excreta a waste? International Journal of Environmental Technology and Management, 15(3/4/5/6), 325–332.

Mawla, M. R., Sultana, N., & Shiblee, M. (2021). Design and construction of biogas plant from human excreta at remote island of Bangladesh and its socio-environmental benefits. 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 1–6. https://doi.org/10.1109/ICEEICT53905.2021.9667941

Mkude, I. T., Gabrielsson, S., & Kimwaga, R. (2021). Knowledge, attitudes and practices (KAP) on fecal sludge resource recovery and reuse in Dar es Salaam, Tanzania. Journal of Water, Sanitaton & Hygiene for Development, 00(0), 1–13. https://doi.org/10.2166/washdev.2021.249

Moya, B., Parker, A., Sakrabani, R., & Mesa, B. (2019). Evaluating the efficacy of fertilisers derived from human excreta in agriculture and their perception in Antananarivo, Madagascar. Waste and Biomass Valorization, 10(4), 941–952. https://doi.org/10.1007/s12649-017-0113-9

Mudasar, R., & Kim, M.-H. (2017). Experimental study of power generation utilizing human excreta. Energy Conversion and Management, 147, 86–99. https://doi.org/10.1016/j.enconman.2017.05.052

Mukherjee, S., & Chakraborty, D. (2016). Turning human waste into renewable energy: Scope and options. In Munich Personal RePEc Archive (MPRA), 1–25. https://mpra.ub.uni-muenchen.de/73669

Mumbi, M. R. (2017). Adoption of human waste biogas technology by rural households in Kiganjo Division Kiambu County, Kenya (C. M. Gichuki (ed.).

Muralidharan, A. (2017). Feasibility, health and economic impact of generating biogas from human excreta for the state of Tamil Nadu, India. Renewable and Sustainable Energy Reviews, 69, 59–64. https://doi.org/10.1016/j.rser.2016.11.139

Muthuniranjan, J., & Murugan, S. (2020). Design of an anaerobic digester for biogas production from night soil. International Research Journal of Engineering and Technology (IRJET), 7(8), 5060–5062. www.irjet.net

Nayem, Z. (2023). Biogas-An alternative energy source for domestic and small-scale industrial use in Nigeria. American Journal of Innovation in Science and Engineering (AJISE), 2(1), 8–16. https://doi.org/10.54536/ajise.v2i1.1217

Nordin, A. (2010). Ammonia sanitisation of human excreta-Treatment technology for production of fertiliser. SLU Service, Uppsala.

Nsiah-Gyambibi, R., Essandoh, H. M. K., Asiedu, N. Y., & Fei-Baffoe, B. (2021). Valorization of fecal sludge stabilization via vermicomposting in microcosm enriched substrates using organic soils for vermicompost production. Heliyon, 7(e06422), 1–9. https://doi.org/10.1016/j.heliyon.2021.e06422

Nzouebet, W. A. L., Kengne, E. S., Rechenburg, A., Ndangang, J.-J. N., & Noumsi, I. M. K. (2022). Fecal sludge treatment in a pilot-scale vertical-flow constructed wetlands for the removal of helminth eggs. Journal of Water, Sanitaton & Hygiene for Development, 00(1), 1–13. https://doi.org/10.2166/washdev.2022.090

Odey, E. A., Abo, B. O., Giwa, A. S., & Li, Z. (2019). Fecal sludge management: Insights from selected cities in Sub-Saharan Africa. Archives of Environmental Protection, 45(2), 50–57. https://doi.org/10.24425/aep.2019.127984

Onwosi, C. O., Igbokwe, V. C., & Ezugworie, F. N. (2022). Decentralized Anaerobic Digestion Technology for Improved Management of Human Excreta in Nigeria. In Anaerobic Biodigesters for Human Waste Treatment. Singapore: Springer Nature Singapore. 137-163 https://doi.org/10.1007/978-981-19-4921-0_8

Oseo-Marfo, M., de Vries, N. K., & Awuah, E. (2022). People’s perceptions on the use of human excreta for biogas generation in Ghana. Environment, Development and Sustainability, 24(1), 352–376. https://doi.org/10.1007/s10668-021-01439-4

Owamah, H. I., Dahunsi, S. O., Oranusi, U. S., & Alfa, M. I. (2014). Fertiliser and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Management, 34(4), 747–752. https://doi.org/10.1016/j.wasman.2014.01.017

Parab, C., Shastri, S., & Meshram, M. (2021). Developing integrated malaprabha digester for management of kitchen waste and human excreta. International Journal of Advances in Engineering Research (IJAER), 21(5), 11–18. http://www.ijaer.com

Paramita, N., & Koestoer, R. H. S. K. (2021). Fecal sludge management in developing countries: Developing countries comparison. Jurnal Presipitasi, 18(3), 564–570. https://doi.org/10.14710/presipitasi.v18i3.504-510

Pasi, N. (2022). An assessment of fecal sludge management policies, programs, and practices in Tamil Nadu (pp. 1–14). WaterAid India. www.wateraid.org

Pathak, B., & Jha, P. K. (2023). Biogas from human excreta of public toilet complex and mixed feed. Energy, Environment and Sustainable Development: Challenges for the 21st Century, IAEE Online Conference Proceedings. iaee.org/en/publication/proceedingabstract.aspx?id=9772

Patiya, K. (2009). Utilization of human excreta for fertilizer and biogas as solution to disposal problem in Thailand. Environmental & Sanitary Engineering Research, 23(4), 14–16.

Peal, A., Evans, B., Blackett, I., Hawkins, P., & Heymans, C. (2014). Fecal sludge management: A comparative analysis of 12 cities. Journal of Water, Sanitation and Hygiene for Development, 1–18. https://doi.org/10.2166/washdev.2014.026

Peguero, D. A., Mutsakatira, E. T., Buckley, C. A., Foutch, G. L., & Bischel, H. N. (2021). Evaluating the microbial safety of heat-treated fecal sludge for black soldier fly larvae production in South Africa. Environmental Engineering Science, 38(5), 331–339. https://doi.org/10.1089/ees.2020.0272

Pham-Duc, P., Nguyen-Viet, H., Hattendorf, J., Zinsstag, J., Phung-Dac, C., Zurbrugg, C., & Odermatt, P. (2013). Ascaris lumbricoides and Trichuris trichiura infections associated with wastewater and human excreta use in agriculture in Vietnam. Parasitology International, 62(2), 172–180. https://doi.org/10.1016/j.parint.2012.12.007

Pham, H. G., Harada, H., Fujii, S., Nguyen, P. H. L., & Huynh, T. H. (2016). Transition of human and livestock waste management in rural Hanoi: A material flow analysis of nitrogen and phosphorus during 1980–2010. Journal of Material Cycles and Waste Management, 1–13. https://doi.org/10.1007/s10163-016-0484-1

Rahman, M. M., Ali, M. A., Choudhury, Mahbuboor R Rahman, M. A., Redwan, A. M., Noor, N. F., & Sohan, A. I. (2016). Fecal sludge management (FSM) scenario in urban areas of Bangladesh (pp. 1–15). https://doi.org/10.13140/RG.2.2.25766.73280

Rahman, M. M., Ali, M. A., Choudhury, M. R., Rahman, M. A., Redwan, A. M., Noor, N. F., & Sohan, A. I. (2015). Case study: Fecal sludge management (FSM) scenario in urban areas of Bangladesh. ADB South Asia Urban Knowledge Hub & ITN-BUET Bangladesh National Centre. https://doi.org/10.13140/RG.2.2.32062.28481

Rao, K. C., & Doshi, K. (2017). Case: Biogas from fecal sludge and kitchen waste at prisons (R. Jirasinha (ed.)). Taylor & Francis.

Rao, K. C., & Gebrezgabher, S. (2018). Biogas from fecal sludge at community level-Business model 3. In M. Otoo & P. Drechsel (Eds.), Resource Recovery from Waste: Business Models for Energy, Nutrient and Water Reuse in Low- and Middle-income Countries (pp. 124–132). Oxon, UK: Routledge-Earthscan. https://hdl.handle.net/10568/93330

Rathamuang, S., Laowansiri, S., & Chookietwattana, K. (2015). Biogas production from excreta. Journal of Science and Technology MSU, 34(1), 53–62.

Reed, B., & Shaw, R. (2003). Using human waste. Waterlines, 22(2), 15–18. https://doi.org/10.3362/0262-8104.2003.053

Regattieri, A., Bortolini, M., Ferrari, E., Gamberi, M., & Piana, F. (2018). Biogas micro-production from human organic waste—A research proposal. Sustainability, 10(330), 1–14. https://doi.org/10.3390/su10020330

Rowles, L. S., Morgan, V. L., Li, Y., Zhang, X., Watabe, S., Stephen, T., Lohman, H. A. C., DeSouza, D., Hallowell, J., Cusick, R. D., & Guest, J. S. (2022). Financial viability and environmental sustainability of fecal sludge treatment with pyrolysis omni processors. ACS Environmental, 2, 455–466. https://doi.org/10.1021/acsenvironau.2c00022

Rwigema, A. (2019). Safety and nutrient values (NPK) of bio-effluent from human excreta used to feed biogas plants in Rwanda. Rwanda Journal of Engineering, Science, Technology and Environment, 2(1), 1–12. https://doi.org/10.4314/rjeste.v2i1.1

Saha, R. P., Raaz, T. S., & Badruzzaman, A. B. M. (2022). Assessing the fuel potential of fecal sludge and coal through co-combustion. 6th International Conference on Advances in Civil Engineering (ICACE-2022), 1–8. www.cuet.ac.bd/icace

Saydullaeva, F. J. (2023). Innovative solutions to increase dietary diversity of rural households. American Journal of Agricultural Science, Engineering, and Technology (AJASET), 7(2), 16–20. https://doi.org/10.54536/ajaset.v7i2.1552

Sayem, M. A. (2022). Performance optimization of biological pretreatment on hydrothermal liquefaction of microalgae-fecal sludge (M. Khalekuzzaman (ed.)) [Khulna University of Engineering & Technology]. https://doi.org/10.13140/RG.2.2.14180.04486

Schroeder, E. (2011). Marketing human excreta: A study of possible ways to dispose of urine and faeces from slum settlements in Kampala, Uganda. Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ).

Shedrack, M. R. (2018). Assessment of acceptance of the use of human excreta for biogas in cooking: A case of selected educational institutions in Bagamoyo District (N. Jiwaji (ed.)). Open University of Tanzania.

Shukla, A., Patwa, A., Parde, D., & Vijay, R. (2023). A review on generation, characterization, containment, transport and treatment of feacl sludge and septage with resource recovery-oriented sanitation. Environmental Research, 216(114389). https://doi.org/10.1016/j.envres.2022.114389

Simiyu, S., Mberu, C., & Mberu, B. (2021). Fecal sludge management in low income settlements: Case study of Nakuru, Kenya. Frontiers in Public Health, 9(750309), 1–8. https://doi.org/10.3389/fpubh.2021.750309

Singh, S., Hariteja, N., Sharma, S., Raju, N. J., & Prasad, T. J. R. (2021). Production of biogas from human faeces mixed with the co-substrate poultry litter & cow dung. Environmental Technology & Innovation, 23(101551), 1–10. https://doi.org/10.1016/j.eti.2021.101551

Singh, S., Laker, F., Bateganya, N., Nkurunziza, A. G., Semiyaga, S., & Brdjanovic, D. (2022). Evaluation of business models for fecal sludge emptying and transport in informal settlements of Kampala, Uganda. Water, 14(2914), 1–15. https://doi.org/10.3390/w14182914

Sklar, R., Zhou, Z., Zalay, M., Muspratt, A., & Hammond, S. K. (2019). Occupational exposure to endotoxin along a municipal scale fecal sludge collection and resource recovery process in Kigali, Rwanda. International Journal of Environmental Research and Public Health, 16(4740), 1–11. https://doi.org/10.3390/ijerph16234740

Snell, J. (1943). Anaerobic Digestion: III. Anaerobic digestion of undiluted human excreta. Sew Work J, 15(4), 679–701.

Somorin, T. O. (2020). Valorisation of human excreta for recovery of energy and high-value products: A mini-review. Green Energy and Technology, 341–370. https://doi.org/10.1007/978-3-030-38032-8_17

Song, Z., Qin, J., Yang, G., Feng, Y., & Ren, G. (2012). Effect of human excreta mixture on biogas production. Advanced Materials Research, 347–353, 2570–2575. https://doi.org/10.4028/www.scientific.net/AMR.347-353.2570

Soyingbe, A., Olayinka, O., Bamgbose, O., & Adetunji, M. (2019). Compositional analysis of biogas produced from faecal sludge co-digested with organic feedstocks. Journal of Chemical Society of Nigeria, 44(5), 858–870. https://www.researchgate.net/publication/335589064

Spångberg, J., Tidåker, P., & Jönsson, H. (2021). Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater treatment. Science of the Total Environment, 493(2014), 209–219. https://doi.org/10.1016/j.scitotenv.2014.05.123

Sun, Z. Y., Liu, K., Tan, L., Tang, Y. Q., & Kida, K. (2017). Development of an efficient anaerobic co-digestion process for garbage, excreta, and septic tank sludge to create a resource recycling-oriented society. Waste Management, 61, 188–194. https://doi.org/10.1016/j.wasman.2016.11.021

Timmer, L., & Visker, C. (1998). Possibilities and impossibilities of the use of human excreta as fertilizer in agriculture in sub-Sahara Africa (p. 30). Royal Tropical Institute (KIT) and the University of Amsterdam (UvA).

Triastuti, J., Nilawati, D., & Sintawardani, N. (2016). Ecological approach on sanitation: Composting of human excreta using biotoilet with lignocelluloses waste material as matrix. Jurnal Bumi Lestari, 16(1), 1–10.

Tu, V. Van. (2018). Human excreta use in agriculture in Vietnam: Health, economic and environmental aspects (J. Zinsstag, C. Lüthi, & M. Spiess (eds.)). Universität Basel.

Vu-Van, T., Pham-Duc, P., Winkler, M. S., Zurbrügg, C., Zinsstag, J., Thanh, H. L. T., Bich, T. H., & Bich, T. H. (2016). Ascaris lumbricoides egg die-off in an experimental excreta storage system and public health implication in Vietnam. International Journal of Public Health, 1–9. https://doi.org/10.1007/s00038-016-0920-y

Wei, Y., XiaoGuang, Q., & HongXing, L. (2009). Investigation of latrines improvement and excreta utilization in rural areas, China. Journal of Environment and Health, 26(1), 12–14.

WHO. (2018). Flush (or urine-diverting-flush) toilet with biogas reactor and offsite treatment. In WHO Guidelines on Sanitation and Health (pp. 1–3). WHO Sanitation System Fact Sheet. www.who.int/water_sanitation_health

Wini, A., Dennis, W., Elfadil, A., & Mariska, R. (2020). Household biogas digester for slums, IDPs and refugees camps: Case study of Kass South Darfur, Sudan (pp. 1–12). https://www.researchgate.net/publication/360929194

Yaradua, S. A., & Bello, S. (2020). Potency, challenges and problems of biogas production using human excreta in Katsina Local Government Area. Katsina Journal of Natural and Applied Sciences, 9(1), 118–129.

Ying, L., Ji-Kun, H., & Zikhali, P. (2014). Use of human excreta as manure in rural China. Journal of Integrative Agriculture, 13(2), 434–442. https://doi.org/10.1016/S2095-3119(13)60407-4

Zewde, A. A., Li, Z., & Xiaoqin, Z. (2021). Improved and promising fecal sludge sanitizing methods: Treatment of fecal sludge using resource recovery technologies technologies. Journal of Water, Sanitation and Hygiene for Development, 11(3), 335–349. https://doi.org/10.2166/washdev.2021.268

Zhong-Xian, L., Guang-Yo, Q., & Xiu-Dao, D. (1982). Management of human excreta. Supplement, 72, 54–55.

Zseni, A., & Nagy, J. (2016). Environmental impacts and the possibility for sustainable development of human excreta. Proceedings of the 3 International Conference on Environmental and Economic Impact on Sustainable Development (EID 2016), 203, 49–60. https://doi.org/10.2495/EID160051

Zwart, K. B., & Langeveld, J. W. A. (2010). Biogas. In The Biobased Economy (1st ed.). Routledge Taylor & Francis Group: Informa UK Limited. 201–218

Downloads

Published

2023-05-29

How to Cite

Abdulhalim, M. A., Ahmed, A., Moges, A. M., Nayem, Z., Minza, I. S., Muhammad, A. A., & Rohaeni, E. S. (2023). Fecal Sludge Recycling to Useful Products: Environmental Concerns, Viability and Potential. Applied Research and Innovation, 1(1), 1–17. https://doi.org/10.54536/ari.v1i1.1526