Compatibility Study of Synthesized Materials for Thermal Transport in Thermoelectric Power Generation

Authors

  • Christian Idogho Department of Material Science and Engineering, University of Vermont, Burlington, 05405, USA https://orcid.org/0000-0003-4097-9041
  • Emmanuel Owoicho Abah The Food Systems Research Center FSRC & Department of Extension, University of Vermont, USA
  • John Ejila Abel Department of Mechanical Engineering, University of Agriculture Makurdi, 2373, Nigeria
  • Catur Harsito Mechanical Engineering Department, Vocational School of Universitas Sebelas Maret, Surakarta, 57126, Indonesia
  • Modupe Omoniyi Department of Chemistry, University of Vermont, Burlington, 05405, USA
  • Temitope Boriwaye Department of Material Science and Engineering, University of Vermont, Burlington, 05405, USA

DOI:

https://doi.org/10.54536/ajise.v4i1.3948

Keywords:

Compatibility, Power Generation, Synthesized Materials, Thermoelectric, Thermal Transport

Abstract

This study investigates the compatibility of synthesized materials for optimized thermal transport within thermoelectric modules. Experimental procedures involved the synthesis of candidate materials followed by characterization using techniques such as scanning electron microscopy, and thermal conductivity measurements. The research employs electrodeposition of HoSbxTex on the synthesized materials using AAo as a template in the electrolyte composed of 2mm TeO2, 2.5mm Bi(No3)3, 0.33mm SeO2, and 0.2m HNO3. Compatibility assessments were conducted within simulated thermoelectric modules to evaluate the materials’ performance under realistic operating conditions. The findings reveal crucial insights into the interplay between material properties and thermal transport mechanisms, guiding the selection and optimization of materials for enhanced thermoelectric power generation. Moreover, this study underscores the importance of tailored material design to achieve synergistic enhancements in both thermal and electrical conductivity, thereby advancing the efficiency and viability of thermoelectric energy conversion technologies. This research contributes to the ongoing efforts to enhance thermoelectric power generation and supports the global transition to sustainable energy systems.

Downloads

Download data is not yet available.

References

Ali, H., Yilbas, B. S., & Al-Sharafi, A. (2018). Segmented thermoelectric generator: exponential area variation in leg. International Journal of Energy Research, 42(2), 477–489. https://doi.org/https://doi.org/10.1002/er.3825

Du, C. Y., & Wen, C. Da. (2011). Experimental investigation and numerical analysis for one-stage thermoelectric cooler considering Thomson effect. International Journal of Heat and Mass Transfer, 54(23–24), 4875–4884. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2011.06.043

Ferreira-Teixeira, S., & Pereira, A. M. (2018). Geometrical optimization of a thermoelectric device: Numerical simulations. Energy Conversion and Management, 169, 217–227. https://doi.org/10.1016/J.ENCONMAN.2018.05.030

Fraisse, G., Ramousse, J., Sgorlon, D., & Goupil, C. (2013). Comparison of different modeling approaches for thermoelectric elements. Energy Conversion and Management, 65, 351–356. https://doi.org/10.1016/J.ENCONMAN.2012.08.022

Harsito, C., Purba, D. A., Mufti Reza Aulia, P., Triyono, T., & Permata, A. N. S. (2022). Mini Review of Thermoelectric Application with LFP 18650 Battery in Forest Exploration Campfire. AIP Conference Proceedings, 2499. https://doi.org/10.1063/5.0104938

Harsito, C., Reza, M., Putra, A., & Purba, D. A. (n.d.). Mini review of thermoelectric and their potential applications in vehicles.

Harsito, C., Triyono, T., & Rovianto, E. (2022a). Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software. Civil Engineering Journal (Iran), 8(7), 1328–1338. https://doi.org/10.28991/CEJ-2022-08-07-02

He, H., Liu, W., Wu, Y., Rong, M., Zhao, P., & Tang, X. (2019). An approximate and efficient characterization method for temperature-dependent parameters of thermoelectric modules. Energy Conversion and Management, 180, 584–597. https://doi.org/10.1016/J.ENCONMAN.2018.11.002

Karthick, K., Suresh, S., Joy, G. C., & Dhanuskodi, R. (2019). Experimental investigation of solar reversible power generation in thermoelectric generator (TEG) using thermal energy storage. Energy for Sustainable Development, 48, 107–114. https://doi.org/10.1016/J.ESD.2018.11.002

Lee, M.-Y., Seo, J.-H., Lee, H.-S., & Garud, K. S. (2020). Power generation, efficiency, and thermal stress of thermoelectric module with leg geometry, material, segmentation, and two-stage arrangement. Symmetry, 12(5), Article 786. https://doi.org/10.3390/sym12050786

Linseis Messgeräte GmbH. (2023, July). LSR-3 Seebeck-coefficient/resistivity/Harman-method/ZT of modules. Linseis. https://www.linseis.com/en/products/thermoelectric/lsr-3/

Ma, X., Shu, G., Tian, H., Xu, W., & Chen, T. (2019). Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization. Applied Energy, 248, 614–625. https://doi.org/10.1016/J.APENERGY.2019.04.103

Maduabuchi, C. C., & Mgbemene, C. A. (2020). Numerical Study of a Phase Change Material Integrated Solar Thermoelectric Generator. Journal of Electronic Materials, 49(10), 5917–5936. https://doi.org/10.1007/s11664-020-08331-3

Maduabuchi, C., Ejenakevwe, K., Ndukwe, A., & Mgbemene, C. (2021). High performance solar thermoelectric generator using asymmetrical variable leg geometries. E3S Web of Conferences, 239, Article 00005. https://doi.org/10.1051/e3sconf/202123900005

Maduabuchi, C., & Gurevich, Y. (2021). Theoretical investigation on the influence of Seebeck and Thomson effects in a thermoelectric generator. Research Square. https://doi.org/10.21203/rs.3.rs-421044/v1

Moreno, R., Pollman, A., & Grbovic, D. (2018). Harvesting waste thermal energy from military systems. ASME Power Conference. https://doi.org/10.1115/POWER2018-7514

Morgan K. A., Tang T., Zeimpekis I., Ravagli A., Craig C., Yao J., Feng Z., Yarmolich D., Barker C., Assender H., Hewak D. W. (2019). High-throughput physical vapour deposition flexible thermoelectric generators. Scientific Reports, 9, 4393. https://doi.org/10.1038/s41598-019-41000-y

Morozkin A.V. & Nikiforov, V.N. (2005). Thermoelectric Properties of ScCoSb, ScNi0.86Sb,, and MgNiSb Compounds. Journal of Alloys and Compounds, 400, 62 - 66. https://doi.org/10.1016/j.jallcom.2005.04.012

Muthu, G., Shanmugam, S., & Veerappan, A. R. (2019). Theoretical and Experimental Study on a Thermoelectric Generator Using Concentrated Solar Thermal Energy. Journal of Electronic Materials, 48(5), 2876–2885. https://doi.org/10.1007/s11664-019-07024-w

Olivares-Robles, M. A., Badillo-Ruiz, C. A., & Ruiz-Ortega, P. E. (2020). A comprehensive analysis on nanostructured materials in a thermoelectric micro-system based on geometric shape, segmentation structure, and load resistance. Scientific Reports, 10(1), 21659. https://doi.org/10.1038/s41598-020-78770-9

Pallavi, B., Sawanta, S., Kishorkumar, V., Vijay, V., Vishvanath, B., Rahul, M., Rohini, R., & Popatrao, N. (2016). Synthesis of Bismuth Telluride Thin Film for Thermoelectric Application Via Electrodeposition Technique. Macromol. Symp., 361, 152-155. https://doi.org/10.1002/masy.201400234

Pramudi, G., Harsito, C., Muslim, R., & Adika, D. (2024). Investigation of a thermoelectric generator with sandwich leg modification. International Journal of Engineering and Applied Sciences, 12, 87–93. https://doi.org/10.15866/irea.v12i2.23648

Qiu, C., & Shi, W. (2020). Comprehensive modeling for optimized design of a thermoelectric cooler with non-constant cross-section: Theoretical considerations. Applied Thermal Engineering, 176, 115384. https://doi.org/10.1016/J.APPLTHERMALENG.2020.115384

Shittu, S., Li, G., Zhao, X., & Ma, X. (2020). Review of thermoelectric geometry and structure optimization for performance enhancement. Applied Energy, 268, 115075. https://doi.org/10.1016/J.APENERGY.2020.115075

Sudharshan, K. Y., Kumar, V. P., & Barshilia, H. C. (2016). Performance evaluation of a thermally concentrated solar thermo-electric generator without optical concentration. Solar Energy Materials and Solar Cells, 157, 93–100. https://doi.org/10.1016/J.SOLMAT.2016.05.033

Thimont, Y., & LeBlanc, S. (2019). The impact of thermoelectric leg geometries on thermal resistance and power output. Journal of Applied Physics, 126(9), 95101. https://doi.org/10.1063/1.5115044

Twaha S., Zhu J., Yan Y., Li B. (2016). A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews, 65, 698-726. https://doi.org/10.1016/j.rser.2016.07.034

Vikhor, L. N., & Anatychuk, L. I. (2009). Generator modules of segmented thermoelements. Energy Conversion and Management, 50(9), 2366–2372. https://doi.org/10.1016/J.ENCONMAN.2009.05.020

Wang, R., Meng, Z., Luo, D., Yu, W., & Zhou, W. (2020). A Comprehensive Study on X-Type Thermoelectric Generator Modules. Journal of Electronic Materials, 49(7), 4343–4354. https://doi.org/10.1007/s11664-020-08152-4

Wang, X. D., Huang, Y. X., Cheng, C. H., Ta-Wei Lin, D., & Kang, C. H. (2012). A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy, 47(1), 488–497. https://doi.org/10.1016/J.ENERGY.2012.09.019

Wu, S.Y., Zhang, Y.-C., & Xiao, L. (2018). Conceptual design and performance analysis of concentrated solar-driven TIC/AMTEC/TEG hybrid system. International Journal of Energy Research, 42(15), 4674–4686. https://doi.org/https://doi.org/10.1002/er.4209

Wu, Y., Yang, J., Chen, S., & Zuo, L. (2018). Thermo-element geometry optimization for high thermoelectric efficiency. Energy, 147, 672–680. https://doi.org/10.1016/J.ENERGY.2018.01.104

Xiao F., Hangarter C., Yoo B., Rheem Y., Lee K., Myung N. V. (2008). Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochimica Acta,, 53, 8103-8117. https://doi.org/10.1016/j.electacta.2008.06.015

Yoo I., Myung N. V., Lim D. C., Song Y., Jeong Y., Kim Y. D., Lee K. H., Lim J. (2013). Electrodeposition of BixTey thin films for thermoelectric application. Thin Solid Films, 546, 48-52. https://dx.doi.org/10.1016/j.tsf.2013.05.036

Zaman, H. U., Shourov, C. E., Mahmood, A. Al, & Siddique, N. E. A. (2017). Conversion of wasted heat energy into electrical energy using TEG. In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 1–5). https://doi.org/10.1109/CCWC.2017.7868452

Zhang, A. B., Wang, B. L., Pang, D. D., Chen, J. B., Wang, J., & Du, J. K. (2018). Influence of leg geometry configuration and contact resistance on the performance of annular thermoelectric generators. Energy Conversion and Management, 166, 337–342. https://doi.org/10.1016/J.ENCONMAN.2018.04.042

Zheng, F., Jisheng, L., Jun-Liang, C., Ying, P., Huajun, L., Jian, N., Chengyan, L., Wangyang, D., & Lei, M. (2023). Realizing high thermoelectric performance for p-type SiGe in the medium temperature region via TaC compositing. Journal of Materiomics. https://doi.org/10.1016/j.jmat.2023.03.004

Zhu, L., Li, H., Chen, S., Tian, X., Kang, X., Jiang, X., & Qiu, S. (2020). Optimization analysis of a segmented thermoelectric generator based on genetic algorithm. Renewable Energy, 156, 710–718. https://doi.org/10.1016/J.RENENE.2020.04.120

Published

2025-02-03

How to Cite

Christian, I., Abah, E. O., Abel, J. E., Harsito, C., Omoniyi, M., & Boriwaye, T. (2025). Compatibility Study of Synthesized Materials for Thermal Transport in Thermoelectric Power Generation. American Journal of Innovation in Science and Engineering, 4(1), 49–63. https://doi.org/10.54536/ajise.v4i1.3948