Treatment of Fatty Acid Industry Wastewater using Electrocoagulation Method
DOI:
https://doi.org/10.54536/ajise.v4i1.3523Keywords:
COD, Electrocoagulation, Electrode, Oil and Fat, pH, TSSAbstract
The treatment of fatty acid industrial wastewater is a significant challenge due to the high content of organic and inorganic materials that can pollute the environment. One of the effective methods to overcome this problem is electrocoagulation. The purpose of this study was to analyze the effect of contact time and distance between electrodes in reducing the parameters of fatty acid industrial wastewater. In this study, the electrodes used were Aluminum (Al) as the Anode and Iron (Fe) as the Cathode. The electrocoagulation process was carried out using a voltage of 5 volts with a time variation of 75 minutes, 90 minutes, and 105 minutes and a distance between electrodes of 1 cm, 2 cm, and 3 cm. From this study, it was found that the contact time at 105 minutes and the distance between electrodes at 3 cm could raise the pH to 7.3, reduce the COD concentration to 70 mg/L, and reduce the TSS concentration to 2 mg/L contained in the fatty acid industrial wastewater. However, TSS levels often change due to particles that have not completely settled, which can result in sludge contamination when taking TSS test samples.
Downloads
References
Abdulhadi, B. A., Kot, P., Hashim, K. S., Shaw, A., & Khaddar, R. Al. (2019). Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. IOP Conference Series: Materials Science and Engineering, 584(1). https://doi.org/10.1088/1757-899X/584/1/012035
Abed AL-Rubaye, S. F., A. AlHaboubi, N., & Al-Allaq, A. H. (2024). Factors Affecting Electrocoagulation Process for Different Water Types: A review. Al-Khwarizmi Engineering Journal, 20(1), 17–32. https://doi.org/10.22153/kej.2024.10.001
Akhter, F., Soomro, S. A., Siddique, M., & Ahmed, M. (2021). Pollutant Removal Efficiency of Electrocoagulation Method from Industrial Wastewater: Comparison with Other Treatment Methods and Key Operational Parameters—a Comparative Study Review. Water, Air, & Soil Pollution, 232(3), 93. https://doi.org/10.1007/s11270-021-05022-5
Alam, P. N., Aslam, I. N., Abdillah, I. R., Pratama, R. N., & Pontas, K. (2024). Improving Acid Mine Drainage Treatment through Electrocoagulation: Effect of Time, Electrode Distance, and Electrode Types. E3S Web of Conferences, 543. https://doi.org/10.1051/e3sconf/202454301004
Ale-Tayeb, S. M., Derikvand, E., Solimani Babarsad, M., Razaz, M., & Eslami, H. (2023). Electrocoagulation Process Efficiency for Removing Effluent Pollution Caused by Drilling of Oil Rigs. Journal of Advances in Environmental Health Research, 11(2), 112–118. https://doi.org/10.34172/jaehr.2023.14
Andili, & Agung, T. (2021). Pengelolaan Limbah CairJasa Pencucian Kendaraan Dengan Metode Elektrokoagulasi, 2, 130–136.
Apriyanti, M., Sutanto, S., & Kusumawardani, L. J. (2023). Application of Electrocoagulation in Soy Milk Wastewater Treatment Process with Variation of Time and Voltage. Helium: Journal of Science and Applied Chemistry, 3(2), 45–53. https://doi.org/10.33751/helium.v3i2.8923
Benekos, A., Papadopoulos, K., Triantaphyllidou, I.-E., Tekerlekopoulou, A., & Vayenas, D. (2022). Treatment of various agro-industrial wastewaters using electrocoagulation. Proceedings of the 16th International Conference on Environmental Science and Technology, 16(September), 2016–2017. https://doi.org/10.30955/gnc2019.00307
Bi-Ngül Reçber, Z., Ekmekyapar Torun, F., Kul, S., & İRdemez, Ş. (2022). Investigation of the effect of current density and PH on oil and grease removal from leather industry wastewaters by electrocoagulation method. Sigma Journal of Engineering and Natural Sciences, 40(4), 705–714. https://doi.org/10.14744/sigma.2022.00086
Camcıoğlu, Ş., & Özyurt, B. (2024). Optimization and PID Control of pH and Temperature in an Electrocoagulation Process. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 7(1), 13–24. https://doi.org/10.58692/jotcsb.1353347
Fadhila, F., Zulkarnaini, Z., Husin, A., & Syawal, F. A. (2024). Effect of Electrode Distance, Stirring Speed and Contact Time on Removal of Polyethylene Microplastics (Microbeads) Using Electrocoagulation Method. Elkawnie, 10(1), 158. https://doi.org/10.22373/ekw.v10i1.22195
Fauzi, N. (2019). Penggunaan Metode Elektrokoagulasi menggunakan Elektroda Alumunium dan Besi pada Pengolahan Air Limbah Batik. 100, 60117.
Guerreiro Crizel, M., Barreto, T. M., Fiori, M. A., Colpani, G. L., & Muneron de Mello, J. M. (2024). Electrocoagulation Process as a Consolidated Technology in the Treatment of Industrial Effluents and as a Promising Process in the Treatment of Effluents Generated by Car Washes: A Brief Review. ACS ES&T Water, 4(5), 1978–2004. https://doi.org/10.1021/acsestwater.3c00413
Han, X. X., Zhang, T. A., Lv, G. Z., Pan, X. J., & Fu, D. X. (2021). Effects of Diffusion with Electrode Spacing and Concentration Difference on Al2O3 Preparation from AlCl3 Solution by Electrotransformation. Russian Journal of Non-Ferrous Metals, 62(2), 147–156. https://doi.org/10.3103/S106782122102005X
Jain, N. (2023). Water Pollution due to Industrial Waste Effluents and their Management. International Journal For Multidisciplinary Research, 5(1), 1–7. https://doi.org/10.36948/ijfmr.2023.v05i01.1608
Konduru, M. D., Vangalapati, M., & Shaik, F. (2023). Performance of Electrocoagulation Process Using Iron and Aluminum Electrodes With and Without Perforations. Chemistry and Chemical Technology, 17(1), 164–169. https://doi.org/10.23939/chcht17.01.164
Kustiningsih, I., Triyogo Adiwibowo, M., Astuti, D., Oktavia, E., & Kartika Sari, D. (2022). The Effect of pH on the Eliminition of Dye Waste Using Combination of Photocatalytic and Electrocoagulation Methods. Flywheel: Jurnal Teknik Mesin Untirta, 8(2), 49–54. http://jurnal.untirta.ac.id/index.php/jwl
Lu, H., Li, Q., & Feng, W. (2022). Application Progress of O3/UV Advanced Oxidation Technology in the Treatment of Organic Pollutants in Water. In Sustainability (Vol. 14, Issue 3). https://doi.org/10.3390/su14031556
Martínez-Villafañe, J. F., Ortiz-Cuellar, J. C., Galindo-Valdés, J. S., Cepeda-Rodríguez, F., Gómez-Casas, J., Rodríguez-Rosales, N. A., Gómez-Casas, O., & Muñiz-Valdez, C. R. (2022a). Interelectrode Distance Analysis in the Water Defluoridation by Electrocoagulation Reactor. Sustainability, 14(19). https://doi.org/10.3390/su141912096
Martínez-Villafañe, J. F., Ortiz-Cuellar, J. C., Galindo-Valdés, J. S., Cepeda-Rodríguez, F., Gómez-Casas, J., Rodríguez-Rosales, N. A., Gómez-Casas, O., & Muñiz-Valdez, C. R. (2022b). Interelectrode Distance Analysis in the Water Defluoridation by Electrocoagulation Reactor. Sustainability, 14(19). https://doi.org/10.3390/su141912096
Masthura, M., Daulay, A. H., & Daulay, L. (2022). Penurunan Kandungan Bod Dan Cod Limbah Cair Kelapa Sawit Menggunakan Metode Elektrokoagulasi. JISTech (Journal of Islamic Science and Technology), 6(2), 1–9. https://doi.org/10.30829/jistech.v6i2.10014
Muliyana, R. I. A. (2019). Upaya Penurunan Kadar Logam Berat Air Menggunakan Metode Elektrokoagulasi Untuk Menghasilkan Air Bersih.
Munawarah, S. (2023). Removal Of COD, BOD, Ammonia And TSS Using Electrocoagulation Method With A Combination Of Aluminum (Al) And Iron (Fe) Electrodes In Fish Processing Wastewater. IJES: Indonesian Journal of Environmental Sustainability, 1(2), 8–18.
Ndjomgoue-Yossa, A. C., Nanseu-Njiki, C. P., & Ngameni, E. (2022). Effect of pH on Escherichia coli Removal by Electrocoagulation and Elimination Kinetics after Treatment. Journal of Chemistry, 2022. https://doi.org/10.1155/2022/5249368
Oktiawan, W., Priyambada, I. B., Aji, S., & Budi, F. S. (2021). Effect of current strength on electrocoagulation using Al-Fe electrodes in COD and TSS removal of domestic wastewater. IOP Conference Series: Earth and Environmental Science, 623(1). https://doi.org/10.1088/1755-1315/623/1/012080
Radmehr, R., Rafiee, M., & Yazdanbakhsh, A. (2022). Comparing the performance of UV/Acetylacetone and UV/O3 processes for treatment of olive mill wastewater. Environmental Health Engineering and Management, 9(2), 115–123. https://doi.org/10.34172/EHEM.2022.13
Ramya Sankar, V. S. (2023). Removal of Emerging Contaminants Present in Wastewater by Electrocoagulation Process. CRC Press.
Salim, A., Al–Hattab, T. A., & Al-Barakat, H. S. (2022). Influence of Different Parameters on the Electrocoagulation Process. 2022 2nd International Conference on Advances in Engineering Science and Technology (AEST), 89–94. https://doi.org/10.1109/AEST55805.2022.10412901
Solis-Marcial, O. J., Nacional, I. P., Talavera-López, A., Ruelas-Leyva, J. P., Alfredo, J., Instituto, H.-M., Nacional, P., Zarate-Gutiérrez, R., Politécnico, I., Alejandro, N., Ortiz-Marin, D., & Serrano-Rosales, B. (2023). Clariing of Mining Process Water by Electrocoagulation. Research Square. https://doi.org/10.21203/rs.3.rs-3270048/v1
Sun, W., Dong, H., Wang, Y., Duan, S., Ji, W., Huang, H., Gu, J., & Qiang, Z. (2023). Ultraviolet (UV)-based advanced oxidation processes for micropollutant abatement in water treatment: Gains and problems. Journal of Environmental Chemical Engineering, 11(5), 110425. https://doi.org/https://doi.org/10.1016/j.jece.2023.110425
Ulfa, P. C., Mirwan, A., Wicakso, D. R., Sahrani, S., Azwari, A. F., Lestarif, L. H., & Maliyah, N. (2024). Influence of Current Density for Pollutant Removal from Palm Oil Mill Effluent. Advances in Science and Technology, 138, 105–111. https://doi.org/10.4028/p-8RGeN8
Weiss, S. F., Christensen, M. L., & Jørgensen, M. K. (2021). Mechanisms behind pH changes during electrocoagulation. AIChE Journal, 67(11), 1–13. https://doi.org/10.1002/aic.17384
Winarko, W., Kriswandana, F., Tohari, I., & Nugroho, H. S. W. (2022). The effect of aluminum electrode distance in electrocoagulation as a reductor of heavy metal lead (Pb) in water: An environmental health study. International Journal of Health Sciences, 6(June), 1129–1137. https://doi.org/10.53730/ijhs.v6ns7.11504
Yurnalisdel. (2022). Analysis of the Impact of Liquid Waste on Environmental Pollution. Formosa Journal of Sustainable Research, 1(6), 1017–1028. https://doi.org/10.55927/fjsr.v1i6.1951
Zhu, X., Qiu, J., Wang, Y., Tang, Y., & Zhang, Y. (2024). Effective Degradation of 1,4-Dioxane by UV-Activated Persulfate: Mechanisms, Parameters and Environmental Impacts. Water, 16(9). https://doi.org/10.3390/w16091281
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. Julian Saputra Jaya, Muhrinsyah Fatimura, Aan Sefentry, Muhammad Bakrie, Reno Fitriyanti, Rully Masriatini

This work is licensed under a Creative Commons Attribution 4.0 International License.