Lung Cancer Detection and Classification Using Machine Learning: A Literature Review
DOI:
https://doi.org/10.54536/ajiri.v4i1.3797Keywords:
Detection and Classification, Lung Lesion, Machine Learning, Preprocessing, SensitivityAbstract
Lung cancer is one of the pressing public health issues needing accurate and timely diagnosis. Machine learning (ML) is an effective method for analyzing medical images and supporting lung cancer diagnosis and it has significant potential to advance medical practice. This review explored the efficacy of current machine learning methods in detecting and classifying lung cancer. It analyzes the studies on preprocessing techniques, detection accuracy, and classification performance. Preprocessing techniques have significantly improved image quality through noise cancellation and feature enhancement, making it highly efficient. The sensitivity of the machine learning algorithms used for identification of lung cancer is also high, surpassing 90% of some research. This translates to a high probability of correctly identifying actual cancer cases. Support Vector Machines (SVM), Random Forest, and Convolutional Neural Networks (CNN) are among the most effective algorithms. Furthermore, machine learning accurately classifies lung nodules as benign or malignant, exceeding 85% in reported studies. SVM and K-Nearest Neighbor (KNN) are commonly used classification methods with promising results. Through continued research efforts to overcome existing challenges, machine learning could achieve heightened accuracy, seamless integration into clinical practice, and improved outcomes for patients with lung cancer.
Downloads
References
Abdullah, D. M., Abdulazeez, A. M., & Sallow, A. B. (2023). Lung cancer prediction and classification based on correlation selection method using machine learning techniques. Quban Academy Journal, 1(2), 141–149. https://doi.org/10.48161/qaj.v1n2a58
Al Mohammad, B., Brennan, P. C., & Mello-Thoms, C. (2017). A review of lung cancer screening and the role of computer-aided detection. Clinical Radiology, 72(6), 433-442. https://doi.org/10.1016/j.crad.2017.01.002
Azevedo, B. F. A., Rocha, A. M. A. C., & Pereira, A. I. (2024). Hybrid approaches to optimization and machine learning methods: A systematic literature review. Machine Learning, 113, 4055–4097. https://doi.org/10.1007/s10994-023-06467-x
Buty, M., Xu, Z., Gao, M., Bagci, U., Wu, A., & Mollura, D. J. (2016). Characterization of lung nodule malignancy using hybrid shape and appearance features. In S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, & W. Wells (Eds.), Medical image computing and computer-assisted intervention – MICCAI 2016 (Vol. 9900, pp. 662-670). Springer. https://doi.org/10.1007/978-3-319-46720-7_77
Capizzi, G., Mazzocchi, M., & Plesa, S. (2020). Small lung nodules detection based on fuzzy-logic and probabilistic neural network with bioinspired reinforcement learning. IEEE Transactions on Fuzzy Systems, 28(6), 1178–1189. https://doi.org/10.1109/TFUZZ.2019.2952831
Chen, C. H., Wu, H. T., Chang, H. C., Huang, Y. Y., & Chen, C. C. (2018). Radiomic features analysis in computed tomography images of lung nodule classification. PLoS One, 13(2). https://doi.org/10.1371/journal.pone.0192002
Durach, C. F., Kembro, J., & Wieland, A. (2017). A new paradigm for systematic literature reviews in supply chain management. Journal of Supply Chain Management, 53(4), 67–85.
Faisal, M. I., Bashir, S., Khan, Z. S., & Hassan Khan, F. (2018). An evaluation of machine learning classifiers and ensembles for early stage prediction of lung cancer. In 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST) (pp. 1–4). IEEE. https://doi.org/10.1109/ICEEST.2018.8643311
Galeano Galeano, S. D., Esteban Mora Gonzalez, M., & Espinosa Medina, R. A. (2021). Alternative tool for the diagnosis of diseases through virtual reality. In 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI) (pp. 1–4). IEEE. https://doi.org/10.1109/CI-IBBI54220.2021.9626088
Günaydin, Ö., Günay, M., & Şengel, Ö. (2019). Comparison of lung cancer detection algorithms. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT) (pp. 1–4). Istanbul, Turkey. https://doi.org/10.1109/EBBT.2019.8741826
Hoque, A., Farabi, A. K. M. A., Ahmed, F., & Islam, M. Z. (2020). Automated detection of lung cancer using CT scan images. In 2020 IEEE Region 10 Symposium (TENSYMP) (pp. 1030–1033). Dhaka, Bangladesh. https://doi.org/10.1109/TENSYMP50017.2020.9230861
Hrizi, D., Tbarki, K., Attia, M., & Elasmi, S. (2023). Lung cancer detection and nodule type classification using image processing and machine learning. In 2023 International Wireless Communications and Mobile Computing (IWCMC) (pp. 1154–1159). Marrakesh, Morocco. https://doi.org/10.1109/IWCMC58020.2023.10183237
Huang, S., Cai, N., Pacheco, P., Narrandes, S., Wang, Y., & Xu, W. (2018). Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics & Proteomics, 15(1), 41-51. https://doi.org/10.21873/cgp.20063
Hussain, L., Alsolai, H., Hassine, S. B. H., Nour, M. K., Duhayyim, M. A., Hilal, A. M., Salama, A. S., Motwakel, A., Yaseen, I., & Rizwanullah, M. (2022). Lung cancer prediction using robust machine learning and image enhancement methods on extracted gray-level co-occurrence matrix features. Applied Sciences, 12(13), 6517. https://doi.org/10.3390/app12136517
Ingle, K., Chaskar, U., & Rathod, S. (2021). Lung cancer types prediction using machine learning approach. In 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (pp. 1–6). IEEE. https://doi.org/10.1109/CONECCT52877.2021.9622568
Islam, M., Mahamud, A. H., & Rab, R. (2019). Analysis of CT scan images to predict lung cancer stages using image processing techniques. In 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp. 961–967). Vancouver, BC, Canada. https://doi.org/10.1109/IEMCON.2019.8936175
Jayaraj, D., & Sathiamoorthy, S. (2019). Random forest based classification model for lung cancer prediction on computer tomography images. In 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 100–104). Tirunelveli, India. https://doi.org/10.1109/ICSSIT46314.2019.8987772
Kaur, L., Sharma, M., Dharwal, R., & Bakshi, A. (2018). Lung cancer detection using CT scan with artificial neural network. In 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE) (pp. 1624–1629). Bhubaneswar, India. https://doi.org/10.1109/ICRIEECE44171.2018.9009244
Kumar, K. S., Venkatalakshmi, K., & Karthikeyan, K. (2019). Lung cancer detection using image segmentation by means of various evolutionary algorithms. Computational and Mathematical Methods in Medicine, 2019, 4909846. https://doi.org/10.1155/2019/4909846
Li, K., Huang, Y., Cheng, H., Zhang, Y., & Liu, J. (2021). Assessing the predictive accuracy of lung cancer, metastases, and benign lesions using an artificial intelligence-driven computer-aided diagnosis system. Quantitative Imaging in Medicine and Surgery, 11(8), 3629–3642. https://doi.org/10.21037/qims-20-1314
Maleki, N., & Akhavan Niaki, S. T. (2023). An intelligent algorithm for lung cancer diagnosis using extracted features from computerized tomography images. Healthcare Analytics, 3, 100150. https://doi.org/10.1016/j.health.2023.100150
Makaju, S., Prasad, P. W., Alsadoon, A., Singh, A. K., & Elchouemi, A. (2018). Lung cancer detection using CT scan images. Procedia Computer Science, 125, 107–114. https://doi.org/10.1016/j.procs.2017.12.016
Martínez-García, M., & Hernández-Lemus, E. (2022). Data integration challenges for machine learning in precision medicine. Frontiers in Medicine, 8, 784455. https://doi.org/10.3389/fmed.2021.784455
Monkam, P., Qi, S., Ma, H., Gao, W., Yao, Y., & Qian, W. (2019). Detection and classification of pulmonary nodules using convolutional neural networks: A survey. IEEE Access, 7, 78075-78091. https://doi.org/10.1109/ACCESS.2019.2920980
Nair, S. S., Meena Devi, V. N., & Bhasi, S. (2024). Enhanced lung cancer detection: Integrating improved random walker segmentation with artificial neural network and random forest classifier. Heliyon, 10. https://doi.org/10.1016/j.heliyon.2024.e29032
Pandiangan, T., Bali, I., & Silalahi, A. R. J. (2019). Early lung cancer detection using artificial neural network. Atom Indonesia, 45(1), 9–15. https://doi.org/10.17146/aij.2019.860
Patra, R. (2020). Prediction of lung cancer using machine learning classifier. In N. Chaubey, S. Parikh, & K. Amin (Eds.), Computing Science, Communication and Security (Vol. 1235, pp. 101–112). Springer. https://doi.org/10.1007/978-981-15-6648-6_11
Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial intelligence and machine learning in pathology: The present landscape of supervised methods. Academy Pathology, 6, Article 2374289519873088. https://doi.org/10.1177/2374289519873088
Rehman, A., Kashif, M., Abunadi, I., & Ayesha, N. (2021). Lung cancer detection and classification from chest CT scans using machine learning techniques. In 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA) (pp. 101–104). Riyadh, Saudi Arabia. https://doi.org/10.1109/CAIDA51941.2021.9425269
Shi, P., Ray, S., Zhu, Q., & Chen, X. (2011). Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinformatics, 12, Article 375. https://doi.org/10.1186/1471-2105-12-375
Silva, F., Santos, J. A., & Oliveira, A. R. (2022). Towards machine learning-aided lung cancer clinical routines: Approaches and open challenges. Journal of Personalized Medicine, 12(3), 480. https://doi.org/10.3390/jpm12030480
Singh, G. A. P., & Gupta, P. K. (2019). Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications, 31, 6863–6877. https://doi.org/10.1007/s00521-018-3518-x
Thallam, C., Peruboyina, A., Raju, S. S. T., & Sampath, N. (2020). Early stage lung cancer prediction using various machine learning techniques. In 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 1285–1292). IEEE. https://doi.org/10.1109/ICECA49313.2020.9297576
Woźniak, M., Połap, D., Capizzi, G., Lo Sciuto, G., Kośmider, L., & Frankiewicz, K. (2018). Small lung nodules detection based on local variance analysis and probabilistic neural network. Computational Methods and Programs in Biomedicine, 161, 173–180. https://doi.org/10.1016/j.cmpb.2018.04.025
Xie, Y., Wang, Y., Gu, Q., Zhao, Y., Chen, Y., & Liu, L. (2021). Early lung cancer diagnostic biomarker discovery by machine learning methods. Translational Oncology, 14(1), 100907. https://doi.org/10.1016/j.tranon.2020.100907
Xu, Z. (2021). Design of cancer detection system based on CNN model and virtual reality with NLP voice output. In 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT) (pp. 277–284). IEEE. https://doi.org/10.1109/AINIT54228.2021.00062
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lenard Abiel D. Aure, Janice Angela V. Paco, Jessica Z. Panganiban, Cereneo S. Santiago Jr, Gersom S. Baradi

This work is licensed under a Creative Commons Attribution 4.0 International License.



