Acoustic Characterization of Composites Made of Gypsum and Pineapple Leaf Fibres

Authors

  • Esan Martins Taiwo Department of Structure and Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Khairulzan Bin Yahya Department of Structure and Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Zaiton Haron Department of Structure and Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Gambo Makanjuola Dare Department of Building Technology, Federal Polytechnic, Ede, Nigeria
  • Ayegbokiki Sunday Department of Building Technology, Federal Polytechnic, Ede, Nigeria

DOI:

https://doi.org/10.54536/ajirb.v2i2.1802

Keywords:

Natural Fibre, Pineapple Leaf Fibre, Gypsum, Sound Absorption Coefficient, Sound Transmission Loss

Abstract

The research sought to characterize the acoustic properties of gypsum composite which contained 2% pineapple leaf fibre (PALF) and plain gypsum with different thicknesses. The impact of composite thickness and 2%PALF inclusion on the acoustic properties of the PALF-gypsum composite (sound absorption coefficient and sound transmission loss) were examined. A comparison of the sound transmission loss and sound absorption coefficient for frequencies between 60 and 1600 Hz was made possible by acoustic tests using an impedance tube. The sound absorption results showed that adding 2 percent PALF to gypsum significantly improves acoustic properties when compared to plain gypsum. When comparing composite samples 2% PALF (C2) to control samples (C0), the noise reduction coefficient (NRC) result revealed a 50% increase. The composite materials containing 2% PALF had the highest NRC value of 0.18. Furthermore, due to the increase in composite thickness, the sound transmission loss of 2% PALF resulted in greater acoustic insulation in the range of 30 dB. The findings of the experiments show that PALF can greatly increase the insulating qualities of gypsum composites.

Downloads

Download data is not yet available.

References

-2, I. (1998). Acoustic-Determination of sound absorption coefficient and impedance tubes. Standard International, 1998, 11–15.

Adamopoulos, S., Foti, D., Voulgaridis, E., & Passialis, C. (2015). Manufacturing and properties of gypsum-based products with recovered wood and rubber materials. BioResources, 10(3), 5563–5572.

Aghaee, K., Yazdi, M. A., & Yang, J. (2015). Flexural properties of composite gypsum partition panel. (July). https://doi.org/10.1680/ensu.14.00058.

Arroyo, F. N., Christoforo, A. L., Salvini, V. R., Pelissari, P. I. B. G. B., Pandolfelli, V. C., Luz, A. P., & Cardoso, C. A. (2020). Development of plaster foam for thermal and acoustic applications. Construction and Building Materials, 262, 120800. https://doi.org/10.1016/j.conbuildmat.2020.120800

Bledzki, A. K., Sperber, V. E., & Faruk, O. (2002). Natural and wood fibre reinforcement in polymers 13, iSmithers Rapra Publishing.

Bouzit, S., Laasri, S., Taha, M., Laghzizil, A., Hajjaji, A., Merli, F., & Buratti, C. (2019). Characterization of natural gypsum materials and their composites for building applications. Applied Sciences (Switzerland), 9(12). https://doi.org/10.3390/app9122443

Cuthbertson, D., Berardi, U., Briens, C., & Berruti, F. (2019). Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass and Bioenergy, 120(October 2018), 77–83. https://doi.org/10.1016/j.biombioe.2018.11.007

De Oliveira, K. A., Barbosa, J. C., Christoforo, A. L., Molina, J. C., Oliveira, C. A. B., Bertolini, M. S., … Ventorim, G. (2019). Sound absorption of recycled gypsum matrix composites with residual cellulosic pulp and expanded polystyrene. BioResources, 14(2), 4806–4813.

Egan, M. D. (2007). Architectural acoustics. J. Ross Publishing.

Elkhessaimi, Y., Tessier-Doyen, N., & Smith, A. (2017). Effects of microstructure on acoustical insulation of gypsum boards. Journal of Building Engineering, 14(August), 24–31. https://doi.org/10.1016/j.jobe.2017.09.011

Flores Medina, N., Flores-Medina, D., & Hernández-Olivares, F. (2016). Influence of fibres partially coated with rubber from tire recycling as aggregate on the acoustical properties of rubberized concrete. Construction and Building Materials, 129, 25–36. Retrieved from http://dx.doi.org/10.1016/j.conbuildmat.2016.11.007

Garg, M., & Pundir, A. (2014). Investigation of properties of fluorogypsum-slag composite binders - Hydration, strength and microstructure. Cement and Concrete Composites, 45, 227–233. Retrieved from http://dx.doi.org/10.1016/j.cemconcomp.2013.10.010

Guna, V., Yadav, C., Maithri, B. R., Ilangovan, M., Touchaleaume, F., Saulnier, B., … Reddy, N. (2021). Wool and coir fibre reinforced gypsum ceiling tiles with enhanced stability and acoustic and thermal resistance. Journal of Building Engineering, 41(March). https://doi.org/10.1016/j.jobe.2021.102433

Hansen, C. H. (2001). Fundamentals of acoustics. Occupational Exposure to Noise: Evaluation, Prevention and Control. World Health Organization, 23–52.

Hernández-Olivares, F., Bollati, M. R., Del Rio, M., & Parga-Landa, B. (1999). Development of cork-gypsum composites for building applications. Construction and Building Materials, 13(4), 179–186.

Herrero, S., Mayor, P., & Hernández-Olivares, F. (2013). Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars. Materials & Design, 47, 633-642. http://dx.doi.org/10.1016/j.matdes.2012.12.063

Ismail, F. Z., Rahmat, M. N., & Ishak, N. M. (2014). Sustainable Absorption Panels from Agricultural Wastes. 5, 1–6.

Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130(June 2017), 107–114. https://doi.org/10.1016/j.apacoust.2017.09.012

Losso, M., & Viveiros, E. (2005). Sound insulation of gypsum board in practice. International Congress on Noise Control Engineering 2005, INTERNOISE 2005, 2, 1218–1228.

Mohamed, A. R., Sapuan, S. M., Shahjahan, M., & Khalina, A. (2009). Characterization of pineapple leaf fibres from selected Malaysian cultivars. Journal of Food, Agriculture & Environment, 7(1), 235–240.

Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fibre reinforced polymer composite and its applications. International Journal of Polymer Science, 23(1), 291–305.

Mohandesi, J. A., Sangghaleh, A., & Nazari, A. (2012). Strength Assessment and Bonding Study of Aluminum Short Fibre-Reinforced Gypsum Composites. International Journal of Damage Mechanics, 21(1), 129–149.

Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural fibre composites and their applications: a review. Journal of Composites Science, 2(4), 66.

Pedreño-Rojas, M. A., Morales-Conde, M. J., Pérez-Gálvez, F., & Rodríguez-Liñán, C. (2017). Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste. Journal of Cleaner Production, 166, 690–705.

Putra, A., Or, K. H., Zulke, M., Jailani, M., & Nor, M. (2018). Sound absorption of extracted pineapple-leaf fi bres. Applied Acoustics, 136(February), 9–15. https://doi.org/10.1016/j.apacoust.2018.01.029

Rahman, T., Lutz, W., Finn, R., Schmauder, S., & Aicher, S. (2007). Simulation of the mechanical behavior and damage in components made of strain softening cellulose fibre reinforced gypsum materials. Computational Materials Science, 39(1 SPEC. ISS.), 65–74. https://doi.org/10.1016/j.commatsci.2006.01.032

Ramezani, H., Shahdab, S., & Nouri, A. (2012). Study on effects of wood fibre content on physical, mechanical, and acoustical properties of wood-fibre-filled gypsum composites. Materials Research, 15(2), 236–241. https://doi.org/10.1590/S1516-14392012005000018

Satyanarayana, K. G., Sukumaran, K., Mukherjee, P. S., Pavithran, C., & Pillai, S. G. K. (1990). Natural fibre-polymer composites. Cement and Concrete Composites, 12(2), 117–136. https://doi.org/10.1016/0958-9465(90)90049-4

Thomas, R. (2006). Environmental design: an introduction for architects and engineers. Taylor & Francis.

Tie, T. S., Mo, K. H., Putra, A., Loo, S. C., Alengaram, U. J., & Ling, T. C. (2020). Sound absorption performance of modified concrete: A review. Journal of Building Engineering, 30(November 2019), 101219. Retrieved from https://doi.org/10.1016/j.jobe.2020.101219

Vinet, L., & Zhedanov, A. (2011). A “missing” family of classical orthogonal polynomials. In Journal of Physics A: Mathematical and Theoretical, 44, https://doi.org/10.1088/1751-8113/44/8/085201

Yahya, K., Haron, Z., Hamid, S. N. S. A., Fasli, N. M., & Taiwo, E. M. (2019). The Potential of Pineapple Leaf Fibre as an Acoustic Absorber. AWAM International Conference on Civil Engineering, 919–931.

Zhang, W. H., Li, G. Z., & Liu, M. R. (2011). Properties research of cotton fibre reinforced gypsum based composites. Advanced Materials Research, 194–196, 1759–1762.

Downloads

Published

2023-09-02

How to Cite

Taiwo, E. M., Yahya, K. B., Haron, Z., Dare, G. M., & Sunday, A. (2023). Acoustic Characterization of Composites Made of Gypsum and Pineapple Leaf Fibres. American Journal of IR 4.0 and Beyond, 2(2), 30–38. https://doi.org/10.54536/ajirb.v2i2.1802