Physico-Chemical Characterization of Biofertilizers from Vermicomposting Agricultural Residues in Côte D’ivoire

Authors

  • Kouamé Paulin Koffi Soil Sciences, Water and Geomaterials Laboratory of Earth Sciences and Mineral Resources, Training Unit (STRM), University Félix Houphouët-Boigny Abidjan-Côte d’Ivoire https://orcid.org/0009-0000-0423-9033
  • Konan-Kan Hippolyte Kouadio Soil Sciences, Water and Geomaterials Laboratory of Earth Sciences and Mineral Resources, Training Unit (STRM), University Félix Houphouët-Boigny Abidjan-Côte d’Ivoire
  • Kouacou René Akanvou National Agricultural Research Center (CNRA), Côte d’Ivoire https://orcid.org/0009-0006-6521-0625
  • Jean Lopez Essehi National Agricultural Research Center (CNRA), Côte d’Ivoire https://orcid.org/0009-0000-3368-3133

DOI:

https://doi.org/10.54536/ajaset.v9i2.4066

Keywords:

Biofertilizers, Cashew, Cassava, Cocoa, Vermicomposting

Abstract

Vermicomposts and vermiwashs obtained from pre-composted cassava peelings (Ca.Pe), cocoa shells (Co.Sh) and cashew nut shells (Ca.Nu) were assessed for physical characteristics and nutrients content. Five types of substrates were made from cassava (VC1), cashew (VC2), cassava and cashew (VC3), cassava and cocoa (VC4), cocoa and cashew (VC5). About 45 kg of each pre-compost was then placed in a plastic compost bin to be digested by 600 g of earthworms (Eudrilus eugeniae) for 11 weeks. The biofertilizers obtained were analyzed for their total organic carbon, macronutrients and micronutrients content. The pH of the different types of vermicomposts (VC) varied from 5.8 to 8.15. NPK levels varied and depended on the type of substrates used for vermicomposting. Highest values were found in vermicompost from mixed substrates. VC5(18.01; 3.89 and 18.7g/kg), VC4(20.99; 1.29 and 13.7g/kg) and VC3(17.91; 0.91 and 8.72g/kg), VC2(18.06; 0.39 and 4.64g/kg) and VC1(21.19; 0.34 and 2.25g/kg. The pH of the vermiwashs (VW) was alkaline (7.65 to 9.25) and their NPK content was lower than that of the VCs: VW1 (2.09; 0.08 and 2.18g/L), VW2(0.49; 0.09 and 0.44g/L), VW3 (0.33; 0.12 and 1.05g/L), VW4 (2.18; 0.18 and 2.50g/L) and VW5 (0.27; 0.18 and 1.99g/L).

Downloads

Download data is not yet available.

References

Abinaya, V., Devanathan, S., & Senthilmurugan, S. (2024). Physicochemical analysis of compost and vermicompost of banana and water hyacinth leaf wastes processed by using the earthworm Eisenia fetida. International Journal of Entomology Research, 9 (9), 1-7.

Amery, F., Gerits, F., Huygens, J., Lakkenborg Kristensen, H., & Willekens, K. (2021). Influence des caractéristiques du compost et du rapport compost:sol sur les propriétés du sol et la croissance de Vicia faba. Acta Horticulturae, (1317), 271-280. https://doi.org/10.17660/ActaHortic.2021.1317.31

Amritha, K., & Jayasree, S. S. (2020). Production and characterization of vermicompost and biochar from rice straw. Journal of Pharmacognosy and Phytochemistry, 9(5), 1556-1562. https://doi.org/10.22271/phyto.2020.v9.i5v.12557

Andrianantenaina, S. T. (2019). Engrais phosphates biologiques et différentes sources à Madagascar. Mémoire en vue d’obtention du diplôme Licence. Ecole supérieure des sciences agronomiques, Université d’Antananarivo, 53.

Ansari, A. A., & Rajpersaud, J. (2012). Physicochemical Changes during Vermicomposting of Water Hyacinth (Eichhornia crassipes) and Grass Clippings. International Scholarly Research Network Soil Science (2012), 6. doi:10.5402/2012/984783

Ansari, A. A., & Sukhraj, K. (2010). Effect of vermiwash and vermicompost on soil parameters and productivity of okra (abelmoschus esculentus) in Guyana. Pakistan J. Agric. Res., 23 (3-4), 137-142.

Atiyeh, R. M., Subler, S., Edwards, C., Bachman, G., Metzger, J.D. & Shuster, W. (2000). Effects of vermicomposts and composts on plant growth in horticultural container media and soil». Pedobiologia, 44, 579-590.

Awadhpersad, R.R. V., Ori, L., & Ansar, A.A. (2021). Production and effect of vermiwash and vermicompost on plant growth parameters of tomato (Lycopersicon esculentum Mill.) in Suriname. International Journal of Recycling of Organic Waste in Agriculture, 10, 397-413. Doi: 10.30486/IJROWA.2021.1911898.1148

Ayed, L. B., Hassen, A., Jedidi, N., Saidi, N., Bouzaiane, O., & Murano, F. (2005). Caractérisation des paramètres physico-chimiques et microbiologiques au cours d’un cycle de compostage d’ordures ménagères. Environnement, Ingénierie & Développement, (40), 4-11

Beaudette, V. (2014). Caractérisation des liquides issus du compostage de résidus agroalimentaires végétaux. Mémoire de Maîtrise en génie des eaux de l’Université Laval, Canada, 239.

Bongoua, D. A. J. (2009). Implications des communautés bactériennes ferri-réductrices et des paramètres environnementaux dans le fonctionnement et la qualité des sols de rizières (Thaïlande et Côte d’Ivoire). Thèse de Doctorat de l’Université de Cocody, Abidjan et l’Université Henri Poincaré, 251.

Coulibalya, S. S., Ndegwab, P.M., Ayianiab, M., & Bi Zoro, I.A. (2019). Growth, reproduction, and life cycle of Eudrilus eugeniae in cocoa and cashew residues. Applied Soil Ecology, 143,153-160.

Dieng, M., Diedhiou, A. S., & Sambe, F. M. (2019). Valorisation par compostage des déchets solides fermentescibles collectés à l’Ecole Supérieure Polytechnique de l’Université Cheikh Anta Diop de Dakar : Etude de l’effet phytotoxique sur des plants de maïs et d’arachide. International Journal Biological and Chemical Sciences,13(3), 1693-1704

Djeké, M.D., Angui, P.K.T., & Kouadio J. Y. (2011). Décomposition des broyats de coques de cacao dans les sols ferrallitiques de la zone d’Oumé, centre-ouest de la Côte d’Ivoire : effets sur les caractéristiques chimiques des sols. Biotecol. Agron. Soc. Environ., 15(1), 109-117.

Esakkiammal, B., & Sornalatha, S. (2016). Studies on the Physico-chemical Parameters of Different Vermicomposts and Vermiwash from Leaf Litter Wastes by Eudrilus eugeniae. International Journal of Current Microbiology and Applied, 5(6) pp. 377-383. http://dx.doi.org/10.20546/ijcmas.2016.506.043

Essehi, J.L., Yao, K. A., Konan, D., Ballo, E. K., & Obouayeba, S. (2021). Comment produire et utiliser le vermicompost et le vermiwash pour fertiliser le sol. Fiche technique, Centre national de Recherche Agronomique, 3.

Filipović, A., Mandić A., Hadžiabulić, A., Johanis, H., Stipanović, A. & Brekalo, H. (2023). Characterization and evaluation of vermicomposting materials. Journal of the Institute of Landscape Ecology, Slovak Academy of Sciences, 42(2), 101-107. DOI:10.2478/eko-2023-0012

Gupta, R., & Dahiya, T. (2021). Vermicomposting of rice straw. Agricultural Science: Research and Reviews, 3,121-128.

Hien, V., Ehouman, N. M., Touré, M., & Tiho, S. (2018). Effets du vermicompost à base de coques de cacao et de graminées sur quelques paramètres agronomiques de la tomate (Solanum lycopersicum), du concombre (Cucumis sativus) et chou (Brassica oleracea) à Yamoussoukro. Journal of Applied Biosciences, 126, 12707-12716, https://dx.doi.org/10.4314/jab.v126i1.8

Kassin, K.E., Doffangui, K., Kouamé, B., Yoro, R.G., & Assa, A. (2008). Variabilité pluviométrique et perspectives pour la replantation cacaoyère dans le Centre Ouest de la Côte d’Ivoire. Journal of Applied Biosciences, 12, 633 - 641.

Koffi, K.P., Akanvou, K. R., Adolphe, M.G., & Kouadio, K-K. H. (2024). Availability and uses of cocoa pod residues in Côte d’Ivoire: An opportunity to improve soil fertility and plant biosecurity. International Journal of Innovation and Applied Studies, 41(4), 1273-1285.

Kumar, A., Jha, A. K. & Kumar, A. (2022). Physico-chemical characterization of vermicompost and enriched vermicompost. The Pharma Innovation Journal, 11(4),1462-1465.

Lohri, C. R., Diener, S., Zabaleta, I., Mertenat, A., & Zurbrügg, C. (2017). Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middleincome settings. Rev Environ Sci Biotechnol, 16, 81-130. https://doi.10.1007/s11157-017-9422-5

Makkar, C., Singh, J. & Parkash, C. (2017). Vermicompost and vermiwash as supplement to improve seedling, plant growth and yield in Linum usitassimum L. for organic agriculture. Int J Recycl Org Waste Agricult 6, 203-218 https://doi.10.1007/s40093-017-0168-4

Marius, K.K., N’guessan, K., Ignace, K.K., Kévin, K.K., Kouassi, K., Arsène, Z.B.I., & Odette, D.D. (2020). Comparative Effects of Organic Cocoa Shell-Based and Inorganic NPK Fertilization on the Growth and Yield of Four Cassava Varieties. Open Journal of Soil Science, 10, 217-232. https://doi.org/10.4236/ojss.2020.106011

Misra, R.V., Roy, R.N., & Hiraoka, H. (2005). Méthodes de compostage au niveau de l’exploitation agricole. Cahiers techniques de la FAO. Documents de travail sur les terres et les eaux, 51. TC/D/Y5104F/1/05.05/500

Nayak, H., Rai, S., Mahto, R., Rani, P., Yadav, S., Prasad, S.K., & Singh, R. K. (2019). Vermiwash: A potential tool for sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 5, 308-312.

Pattnaik, S., & Reddy, M. V. (2010). Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species- Eisenia fetida, Eudrilus eugeniae, and Perionyx excavates. Applied and Environmental Soil Science, ID 967526, 13. https://doi:10.1155/2010/967526

Pujol, A. (2012). Modélisation du procédé de compostage -Impact du phénomène du séchage. Thèse de Doctorat de l’Université de Toulouse, 268.

Rubabura, J.A.K., Bagalwa, J.J. M., Lorena, A. C., Ngerengo, C. N., & Masunga, C.L. (2020). Caractérisation et évolution de vermicompost des déchets ménagers des vers de terre Eisenia feotida et Perionyx escavatus au Centre de Recherche en Sciences Naturelles de Lwiro, République Démocratique du Congo. Afrique SCIENCE, 17(2), 25-35.

Sall, P. M. (2014). Étude du compost et du lixiviat obtenus par cocompostage des résidus agroalimentaires à la ferme. Mémoire de Maîtrise en biologie végétale de l’Université Laval, 126.

Saravanan, A.K., & Wesely, E.G. (2018). Vermicompost production by eiseniafetida on cassava peel waste compost (periderm). International Journal of Creative Research Thoughts (IJCRT), 6(1), 1676- 1680.

Sierra, J. A, Loranger-Merciris, A, B. G., Solvar, A. F., Badri, C. N., & Arquet, R. (2011). Le vermicompostage en Guadeloupe. Fiche technique INRA, 5.

Xu, P., Shu, L., Li, Y., Zhou, S., Zhang, G., Wu, Y., & Yang, Z. (2023). Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development Hélios, 9(5), 20. https://doi.org/10.1016/j.heliyon.2023.e16311

Zziwa, A., Jjagwe J., Kizito, S., Kabenge, I., Komakech, A. J., & Kayondo, H. (2021). Nutrient recovery from pineapple waste through controlled batch and continuous vermicomposting systems. Journal of Environmental Management (279), 11. https://doi.org/10.1016/j.jenvman.2020.111784

Downloads

Published

2025-05-29

How to Cite

Koffi, K. P., Kouadio, K.-K. H., Akanvou, K. R., & Essehi, J. L. (2025). Physico-Chemical Characterization of Biofertilizers from Vermicomposting Agricultural Residues in Côte D’ivoire. American Journal of Agricultural Science, Engineering, and Technology, 9(2), 53–59. https://doi.org/10.54536/ajaset.v9i2.4066