Computational Study of Canary Greenhouse Side Wall and Roof Vents Opening Effect on Nocturnal Airflow and Climate Patterns

Authors

  • Hassan Majdoubi Laboratoire de Recherche Scientifique et Pédagogique au Monde Méditerranéen, CRMEF Meknès-Tafilalet, Meknès, Maroc
  • Hicham Fatnassi INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
  • Thierry Boulard INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
  • Allal Senhaji Equipe de recherche en Energétique et Mécanique des Fluides, ENSAM Meknès, Maroc
  • Mhamed Mouqallid Equipe de recherche en Energétique et Mécanique des Fluides, ENSAM Meknès, Maroc
  • Hassan Demrati Laboratoire de Thermodynamique et Energétique (LTE), Faculté des Sciences, Agadir, Maroc
  • Lahcen Bouirden Laboratoire de Thermodynamique et Energétique (LTE), Faculté des Sciences, Agadir, Maroc
  • Salma Elbahi Laboratoire de Thermodynamique et Energétique (LTE), Faculté des Sciences, Agadir, Maroc

DOI:

https://doi.org/10.54536/ajaset.v3i1.39

Keywords:

Greenhouse, CFD, Insect screen, Ventilation openings, Climate

Abstract

The following paper presents a Computational Fluid Dynamic (CFD) comparative study of the effect of side wall and roofs vents openings on canary greenhouse airflow circulation and climate distribution under different ventilation processes. The investigation was conducted in a one hectare canary greenhouse type, which is the most widespread type in the whole Mediterranean and along the Atlantic coast area of Morocco, especially in souss vally region. The simulations were performed with the commercial code CFD2000 based on the solution of the partial differential equations, which describe the flows, and was obtained by discretizing the space and time and solving the transport equations on the spatial grid as difference equations, used a finite volume discretization. The standard two equations k-ε model was used to describe the turbulent transport. The influence of external factors such the cover temperature, the wind speed, on the flow was simulated by boundary conditions, these values were obtained from experimental results. Simulations were conducted with a fixed wind speed equal 1.05 m/sec, tomato crop rows oriented north-south and the ventilation openings are continuous and equipped with insects screen type 20/10. Results reveal that ventilation opening arrangements strongly affects the greenhouse wind speed, which can generate a heterogeneous climate, especially during daytime. But in the other hand, results confirm that there is no significant effect of the side wall vents opening on canary greenhouse air temperature and humidity fields.

Downloads

Download data is not yet available.

References

Boulard, T., & Baille, A. (1995). Modelling of air exchange rate in a greenhouse equipped with continuous roof vents. Journal of Agricultural Engineering Research, 61, 37-48.

Boulard, T., & Draoui, B. (1995). Natural ventilation of a greenhouse with continuous roof vents: measurements and data analysis. Journal of Agricultural Engineering Research, 61, 27-36.

Boulard, T., Baille, A., Mermier, M., & Villette, F. (1991). Mesures et modélisation de la résistance stomatique foliaire et de la transpiration d‟un couvert de tomates de serre. (Measurement and modeling of tomato leaf stomatal resistance and transpiration in greenhouse conditions). Agronomie, 11(4), 259–274.

Bruse M. (1998). Development of a numerical model for the simulation of exchange processes between small scale environmental design and microclimate in urban areas. Ph.D. Thesis. University of Bochum.

Campen, J. B., & Bot, G. P. A. (2003). Determination of greenhouse-specific aspects of ventilation using three-dimensional computational fluid dynamics. Biosystems Engineering, 84(1), 69-77.

Demrati, H., Boulard, T., Fatnassi, H., Bekkaoui A., Majdoubi H., Elattir H., & Bouirden L. (2007). Microclimate and transpiration of a greenhouse banana crop. Biosystems Engineering, 98, 66-78.

Fatnassi, H., Leyronas, C., Boulard, T., Bardin, M., & Nicot, P. (2009). Dependence of greenhouse tunnel ventilation on wind direction and crop height. Biosystems Engineering, 103(3):338-343.

Fatnassi, H., Boulard, T., & Bouirden, L. (2003). Simulation of climatic conditions in full scale greenhouse fitted with insect proof screens. Agricultural and Forest Meteorology, 118, 97-111.

Fatnassi, H., Boulard, T., Poncet, C., & Chave, M. (2006). Optimisation of greenhouse insecte screening with Computational Fluid Dynamics. Biosystems Engineering, 93(3), 301- 312.

Feuilloley, P., Mekikdjian, C., & Lagier, J. (1994). Natural ventilation of plastic tunnel greenhouses in the Mediterranean. Plasticulture, 104, 33−46.

Majdoubi, H., Boulard, T., Fatnassi, H., & Bouirden, L. (2009) Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Agricultural and Forest Meteorology, 149, 1050–1062.

Haxaire, R. (1999). Caractérisation et Modélisation des écoulements d'air dans une serre (Characterization and Modeling of air flows in a greenhouse). Ph.D. Thesis de l'Université de Nice, Sophia Antipolis., 148p.

Issa, R. I. (1985). Solution of the implicity discritized fluid flow equations by operator-splitting. Journal of computational Physics, 62, 40-65.

Kittas, C., Boulard. T., Mermier, M., & Papadakis, G. (1996). Wind induced air exchange rates in a greenhouse tunnel with continuous side openings. Journal of Agricultural Engineering Research, 65, 37-49.

Kittas, C., Draoui, B., & Boulard, T. (1995). Quantification of the ventilation rate of a greenhouse with a continuous roof opening. Agricultural and Forest Meteorology, 77, 95-111.

Launder, B. E., & Spalding, D. B. (1974). The numerical computational of Turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289

Majdoubi, H., Boulard, T., Hanafi, A., Bekkaoui, A., Demrati, H., Fatnassi, H., Nya, M., & Bouirden, L. (2007). Natural ventilation performance of a large scale canary greenhouse equipped with insect screens. Transections of ASAE, 50(2), 641−650.

Majdoubi, H. (2007). Contribution à la modélisation du microclimat des serres. PhD Thesis, Université Ibn Zohr, Faculté des Sciences d‟Agadir, No D55/2007, 215pp.

Miguel, A. F., Van den Break, N. J., Bot, G. P. A. (1997). Analysis of the airflow characteristics of greenhouse screening materials. Journal of Agricultural Engineering Research, 67, 105-112.

Molina-Aiz, F. D., Valera, D. L., & Alvarez, A. J. (2004). Measurement and simulation of climate inside Almeria-type greenhouses using computational fluid dynamics. Agricultural and Forest Meteorology, 125, 33-51.

Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere, New York.

Piscia, D., Muñoz, P., Panadès, C., & Montero, J. I. (2015). A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Computers and Electronics in Agriculture, 115, 129–141.

Sase, S. (2006). Air movement and climate uniformity in ventilated greenhouses. Acta Horticulturae (ISHS), 719, 313-324.

Willits, D. H., Li, S., & Yunker, C. A. (2006). The cooling performance of naturally ventilated greenhouses in the southeastern U.S. Acta Horticulturae (ISHS), 719, 73-82.

Downloads

Published

2019-11-09

How to Cite

Majdoubi, H., Fatnassi, H., Boulard, T., Senhaji, A., Mouqallid, M., Demrati, H., Bouirden, L., & Elbahi, S. (2019). Computational Study of Canary Greenhouse Side Wall and Roof Vents Opening Effect on Nocturnal Airflow and Climate Patterns. American Journal of Agricultural Science, Engineering, and Technology, 3(1), 72–88. https://doi.org/10.54536/ajaset.v3i1.39